相關(guān)習(xí)題
 0  231709  231717  231723  231727  231733  231735  231739  231745  231747  231753  231759  231763  231765  231769  231775  231777  231783  231787  231789  231793  231795  231799  231801  231803  231804  231805  231807  231808  231809  231811  231813  231817  231819  231823  231825  231829  231835  231837  231843  231847  231849  231853  231859  231865  231867  231873  231877  231879  231885  231889  231895  231903  266669 

科目: 來(lái)源: 題型:選擇題

14.對(duì)任意正整數(shù)n與k(k≤n),f(n,k)表示不超過(guò)[$\frac{n}{k}$],且與n為互質(zhì)的正整數(shù)的個(gè)數(shù),則f(100,3)=( 。
A.11B.13C.14D.19

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=$\frac{x+1}{{e}^{x}}$+alnx有極值點(diǎn),其中e為自然對(duì)數(shù)的底數(shù).
(1)求a的取值范圍;
(2)若a∈(0,$\frac{1}{e}$],求證:?x∈(0,2],都有f(x)<$\frac{1+a-{a}^{2}}{{e}^{a}}$.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

12.棱長(zhǎng)為2的正四面體的四個(gè)頂點(diǎn)都在同一個(gè)球面上,若過(guò)該球球心的一個(gè)截面如圖所示,求圖中三角形(正四面體的截面)的面積.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

11.如圖,直棱柱ABC-A1B1C1的棱長(zhǎng)都為2,點(diǎn)F為棱BC的中點(diǎn),點(diǎn)E在棱CC1上,且CC1=4CE.
(Ⅰ)求證:平面B1AF⊥面EAF;
(Ⅱ)求點(diǎn)C1到平面的EAF的距離.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

10.某幾何體的三視圖如圖,則該幾何體的外接球表面積20π.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

9.已知a,b,c分別是△ABC的內(nèi)角A,B,C的對(duì)邊,且c=2,C=$\frac{π}{3}$.
(Ⅰ)若△ABC的面積等于$\sqrt{3}$,求a,b;
(Ⅱ)若sinC+sin(B-A)=2sin2A,求銳角A的值.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

8.在數(shù)列{an}中,a1=1,當(dāng)n≥2時(shí),其前n項(xiàng)和Sn滿足Sn2=an(Sn-1).
(Ⅰ)求證“數(shù)列{$\frac{1}{S_n}$}是等差數(shù)列;
(Ⅱ)設(shè)bn=log2$\frac{S_n}{S_{n+2}}$,數(shù)列{bn}的前n項(xiàng)和為Tn,求滿足Tn≥2+log23的最小正整數(shù)n.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=4sin2($\frac{π}{4}$+x)-2$\sqrt{3}$cos2x-1,且給定條件p:x<$\frac{π}{4}$或x>$\frac{π}{2}$,x∈R,若條件q:-3<f(x)-m<3,且¬p是q的充分條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

6.給出下列四個(gè)命題:
①命題“對(duì)任意x∈R,有x2≥0”的否定是“存在x0∈R,有x02≥0”;
②“存在x0∈R,使得x02-x0>0”的否定是:“任意x∈R,均有x2-x<0”;
③任意x∈[-1,2],x2-2x≤3;
④存在x0∈R,使得x02+$\frac{1}{x_{0}^{2}+1}$≤1.
其中真命題的序號(hào)③④(填寫所有真命題的序號(hào)).

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

5.若△ABC的面積為S=a2-(b-c)2,則$\frac{sinA}{1-cosA}$=4.

查看答案和解析>>

同步練習(xí)冊(cè)答案