相關(guān)習(xí)題
 0  231926  231934  231940  231944  231950  231952  231956  231962  231964  231970  231976  231980  231982  231986  231992  231994  232000  232004  232006  232010  232012  232016  232018  232020  232021  232022  232024  232025  232026  232028  232030  232034  232036  232040  232042  232046  232052  232054  232060  232064  232066  232070  232076  232082  232084  232090  232094  232096  232102  232106  232112  232120  266669 

科目: 來(lái)源: 題型:填空題

7.已知向量$\overrightarrow{a}$=(-1,2),$\overrightarrow$=(2,k),若$\overrightarrow{a}$∥$\overrightarrow$,則|2$\overrightarrow{a}$-$\overrightarrow$|=4$\sqrt{5}$.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

6.將函數(shù)f(x)=2sin(x-$\frac{π}{3}$)-1的圖象向右平移$\frac{π}{3}$個(gè)單位,再把所有的點(diǎn)的橫坐標(biāo)縮短到原來(lái)的$\frac{1}{2}$倍(縱坐標(biāo)不變),得到函數(shù)y=g(x)的圖象,則函數(shù)y=g(x)圖象的一條對(duì)稱(chēng)軸為( 。
A.直線x=$\frac{π}{6}$B.直線x=$\frac{π}{12}$C.直線x=-$\frac{π}{6}$D.直線x=-$\frac{π}{4}$

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

5.設(shè)p:?x∈R,x2-4x+m>0,q:函數(shù)f(x)=-$\frac{1}{3}$x3-2x2-mx-1在R上是減函數(shù),則p是q的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

4.已知中心在原點(diǎn)且關(guān)于坐標(biāo)軸對(duì)稱(chēng)的雙曲線M的離心率為$\sqrt{3}$,且它的一個(gè)焦點(diǎn)到一條漸近線的距離為2,則雙曲線M的方程不可能是( 。
A.$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{4}$=1B.$\frac{{y}^{2}}{2}$-$\frac{{x}^{2}}{4}$=1C.2x2-y2=4D.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{2}$=1

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

3.已知m,n是兩條直線,α,β是兩個(gè)平面,則下列命題中不正確的是( 。
A.若m⊥β,m?α,則α⊥βB.若m⊥α,α∥β,n?β,則m⊥n
C.若α∥β,n⊥α,m⊥β,則m∥nD.若m∥n,n∥α,α∥β,則m∥β

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

2.甲、乙、丙三人進(jìn)行象棋比賽,每?jī)扇吮荣愐粓?chǎng),共賽三場(chǎng).每場(chǎng)比賽沒(méi)有平局,在每一場(chǎng)比賽中,甲勝乙的概率為$\frac{2}{3}$,甲勝丙的概率為$\frac{1}{4}$,乙勝丙的概率為$\frac{1}{5}$.則甲獲第一名且丙獲第二名的概率;( 。
A.$\frac{11}{12}$B.$\frac{1}{6}$C.$\frac{1}{30}$D.$\frac{2}{15}$

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=|x-a|+|x+1|.
(1)若a=2,解不等式:f(x)<5;
(2)若f(x)≥4-|a-1|對(duì)任意的實(shí)數(shù)x恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

20.在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=\sqrt{3}cosθ\\ y=sinθ\end{array}$(θ為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為:ρsin(θ+$\frac{π}{4}}$)=1.直線l與曲線C相交于點(diǎn)A,B.
(1)求直線l的直角坐標(biāo)方程;
(2)求|AB|.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

19.定義在R上的奇函數(shù)f(x)滿足f(x+1)=f(1-x),且x∈[0,1]時(shí),f(x)=$\sqrt{2x}$,則f(11.5)=-1.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

18.已知函數(shù)f(x)定義域?yàn)閇0,8],則函數(shù)g(x)=$\frac{{f({2x})}}{3-x}$的定義域?yàn)閇0,3)∪(3,4].

查看答案和解析>>

同步練習(xí)冊(cè)答案