相關(guān)習(xí)題
 0  233189  233197  233203  233207  233213  233215  233219  233225  233227  233233  233239  233243  233245  233249  233255  233257  233263  233267  233269  233273  233275  233279  233281  233283  233284  233285  233287  233288  233289  233291  233293  233297  233299  233303  233305  233309  233315  233317  233323  233327  233329  233333  233339  233345  233347  233353  233357  233359  233365  233369  233375  233383  266669 

科目: 來(lái)源: 題型:解答題

16.已知橢圓x2+(m+3)y2=m(m>0)的離心率$e=\frac{{\sqrt{3}}}{2}$,求m的值及橢圓的長(zhǎng)軸和短軸的長(zhǎng)、焦點(diǎn)的坐標(biāo)、頂點(diǎn)的坐標(biāo)、準(zhǔn)線方程.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

15.求適合下列條件的圓錐曲線的標(biāo)準(zhǔn)方程并求出其離心率.
(1)焦點(diǎn)在x軸上,長(zhǎng)軸長(zhǎng)是10,短軸長(zhǎng)8的橢圓方程;
(2)與橢圓$\frac{x^2}{27}+\frac{y^2}{36}=1$有相同焦點(diǎn),且過(guò)點(diǎn)$(\sqrt{15},4)$的雙曲線方程.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

14.為調(diào)查某社區(qū)年輕人的周末生活狀況,研究這一社區(qū)年輕人在周末的休閑方式與性別的關(guān)系,隨機(jī)調(diào)查了該社區(qū)年輕人80人,得到下面的數(shù)據(jù)表:
休閑方式
性別
逛街上網(wǎng)合計(jì)
105060
101020
合計(jì)206080
(1)將此樣本的頻率估計(jì)為總體的概率,隨機(jī)調(diào)查3名在該社區(qū)的年輕男性,設(shè)調(diào)查的3人在這一時(shí)間段以上網(wǎng)為休閑方式的人數(shù)為隨機(jī)變量X,求X的分布列和數(shù)學(xué)期望;
(2)根據(jù)以上數(shù)據(jù),能否有99%的把握認(rèn)為“周末年輕人的休閑方式與性別有關(guān)系”?
參考公式:${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
參考數(shù)據(jù):
P(K2≥k00.150.100.050.0250.010
k02.0722.7063.8415.0246.635

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

13.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果是( 。
A.$\frac{7}{8}$B.$\frac{8}{9}$C.$\frac{9}{10}$D.$\frac{10}{11}$

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

12.已知x,y∈N*且滿足約束條件$\left\{\begin{array}{l}{x-y<1}\\{2x-y>2}\\{x<5}\end{array}\right.$,則x+y的最小值為( 。
A.4B.5C.6D.7

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

11.Sn為{an}前n項(xiàng)和對(duì)n∈N*都有Sn=1-an,若bn=log2an,$\frac{1}{{{b_1}{b_2}}}+\frac{1}{{{b_2}{b_3}}}+…+\frac{1}{{{b_n}{b_{n+1}}}}<m$恒成立,則m的最小值為1.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

10.正方體ABCD-A1B1C1D1外接球半徑$\sqrt{3}$,過(guò)AC作外接球截面,當(dāng)截面圓最小時(shí),其半徑為$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

9.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{(3-a)x-3,x≤7}\\{{a^{x-6}},x>7}\end{array}}\right.$,數(shù)列{an}滿足:an=f(n)(n∈N*),且對(duì)于任意的正整數(shù)m,n,都有$\frac{{{a_m}-{a_n}}}{m-n}>0$,則實(shí)數(shù)a的取值范圍是(2,3).

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

8.設(shè)f(x)是定義在R上的偶函數(shù),對(duì)于任意的x∈R,有f(x+2)=f(x)-f(1),且當(dāng)x∈[-1,0]時(shí),f(x)=($\frac{1}{2}$)x-1,若在區(qū)間(-1,3]內(nèi)關(guān)于x的方程f(x)-loga(x+2)=0恰有3個(gè)不同的實(shí)數(shù)解,則a的取值范圍是( 。
A.(1,3)B.(2,4)C.(3,5)D.(4,6)

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

7.已知函數(shù)f(x)=logax(a>0且a≠1)和函數(shù)$g(x)=sin\frac{π}{2}x$,若f(x)與g(x)兩圖象只有3個(gè)交點(diǎn),則a的取值范圍是( 。
A.$(\frac{1}{5},1)∪(1,\frac{9}{2})$B.$(0,\frac{1}{7})∪(1,\frac{9}{2})$C.$(\frac{1}{7},\frac{1}{2})∪(3,9)$D.$(\frac{1}{7},\frac{1}{3})∪(5,9)$

查看答案和解析>>

同步練習(xí)冊(cè)答案