相關(guān)習題
 0  233259  233267  233273  233277  233283  233285  233289  233295  233297  233303  233309  233313  233315  233319  233325  233327  233333  233337  233339  233343  233345  233349  233351  233353  233354  233355  233357  233358  233359  233361  233363  233367  233369  233373  233375  233379  233385  233387  233393  233397  233399  233403  233409  233415  233417  233423  233427  233429  233435  233439  233445  233453  266669 

科目: 來源: 題型:填空題

10.已知實數(shù)x,y滿足$\left\{\begin{array}{l}y≤x-1\\ x≤3\\ x+5y≥4\end{array}\right.$,則$\frac{x}{y}$的最小值是$\frac{3}{2}$.

查看答案和解析>>

科目: 來源: 題型:填空題

9.設(shè)m=0.30.2,n=log0.23,p=sin1+cos1,則m,n,p的從大到小關(guān)系為p>m>n.

查看答案和解析>>

科目: 來源: 題型:選擇題

8.下列命題中正確的有( 。
①設(shè)有一個回歸方程$\widehaty$=2-3x,變量x增加一個單位時,y平均增加3個單位;
②命題P:“?x0∈R,x02-x0-1>0”的否定?P:“?x∈R,x2-x-1≤0”;
③“命題p或q為真”是“命題p且q為真”必要不充分條件;
④在一個2×2列聯(lián)表中,由計算得k2=6.679,則有99.9%的把握確認這兩個變量間有關(guān)系.
本題可以參考獨立性檢驗臨界值表
P(K2≥k)0.50.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.8415.0246.5357.87910.828
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目: 來源: 題型:選擇題

7.圓C的極坐標方程為:ρ=2sinθ,則其圓心C的直角坐標是( 。
A.(-1,0)B.(1,0)C.(0,-1)D.(0,1)

查看答案和解析>>

科目: 來源: 題型:選擇題

6.已知函數(shù)f(x)的定義域[-1,5],部分對應(yīng)值如表,f(x)的導函數(shù)y=f′(x)的圖象如圖所示,
 x-10245
f(x)141.541
下列關(guān)于函數(shù)f(x)的命題:
①函數(shù)f(x)的值域為[1,4];
②函數(shù)f(x)在[0,2]上是減函數(shù);
③如果當x∈[-1,t]時,f(x)的最大值是4,那么t的最大值為4;
④當1<a<4時,函數(shù)y=f(x)-a最多有4個零點.
其中正確的命題個數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目: 來源: 題型:選擇題

5.若離散型隨機變量X的分布列為
X01
P6a2-a3-7a
則常數(shù)a的值為( 。
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{2}{3}$或$\frac{1}{3}$D.1或$\frac{1}{3}$

查看答案和解析>>

科目: 來源: 題型:填空題

4.已知函數(shù)f(x)=x2+(2k-6)x+2k2+1在區(qū)間(1,3),(3,+∞)各有一個零點,則k的取值范圍是(-4,-2).

查看答案和解析>>

科目: 來源: 題型:解答題

3.已知全集U=R,集合A={x|0≤x≤3},B={x|a<x≤a+1}
(1)當a=1,求∁U(A∩B)
(2)當集合A,B滿足A∪B=A時,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

2.若α是第四象限角,且$cosα=\frac{3}{5}$,則$cos(\frac{π}{2}-α)$等于( 。
A.$\frac{4}{5}$B.$-\frac{4}{5}$C.$\frac{3}{5}$D.$-\frac{3}{5}$

查看答案和解析>>

科目: 來源: 題型:選擇題

1.函數(shù)f(x)=2sinxcosx-2cos2x+1的單調(diào)遞增區(qū)間為(  )
A.$(2kπ-\frac{π}{8},2kπ+\frac{3π}{8})(k∈Z)$B.$(2kπ+\frac{3π}{8},2kπ+\frac{7π}{8})(k∈Z)$
C.$(kπ-\frac{π}{8},kπ+\frac{3π}{8})(k∈Z)$D.$(kπ+\frac{3π}{8},kπ+\frac{7π}{8})(k∈Z)$

查看答案和解析>>

同步練習冊答案