相關習題
 0  235868  235876  235882  235886  235892  235894  235898  235904  235906  235912  235918  235922  235924  235928  235934  235936  235942  235946  235948  235952  235954  235958  235960  235962  235963  235964  235966  235967  235968  235970  235972  235976  235978  235982  235984  235988  235994  235996  236002  236006  236008  236012  236018  236024  236026  236032  236036  236038  236044  236048  236054  236062  266669 

科目: 來源: 題型:填空題

12.如圖所示,已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點為F,過F的直線l交雙曲線的漸近線于A,B兩點,且直線l的傾斜角是漸近線OA傾斜角的2倍,若$\overrightarrow{AF}=2\overrightarrow{FB}$,則該雙曲線的離心率為$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目: 來源: 題型:解答題

11.已知橢圓E:$\frac{x^2}{4}+\frac{y^2}{2}$=1,
(1)若橢圓上存在兩點A,B關于直線y=-2x+1對稱,求直線AB的方程;
(2)過$P(\sqrt{2},5\sqrt{2})$的直線l交橢圓于M,N兩點,求|PM|•|PN|的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

10.如圖所示,已知四棱錐P-ABCD中,底面ABCD為菱形,PA⊥平面ABCD,∠ABC=60°,E,F分別是BC,PB的中點.
(Ⅰ)證明:AE⊥平面PAD;
(Ⅱ)若H為PD上的動點,EH與平面PAD所成最
大角的正切值為$\sqrt{3}$,求二面角B-AF-C的正切值.

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$過點$A(1,\frac{{2\sqrt{3}}}{3})$,離心率為$\frac{{\sqrt{3}}}{3}$,左焦點為F.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)若直線l:$x+\sqrt{2}y-1=0$交橢圓于A,B兩點,求△FAB的面積.

查看答案和解析>>

科目: 來源: 題型:解答題

8.如圖,四邊形ABCD是平行四邊形,平面AED⊥平面ABCD,EF∥AB,$BC=EF=\frac{1}{2}AB$,∠BAD=60°,G為BC的中點.
(Ⅰ)求證:FG∥平面BED;
(Ⅱ)求證:平面BED⊥平面AED.

查看答案和解析>>

科目: 來源: 題型:解答題

7.如圖,圓錐的頂點為P,底面圓O半徑為1,圓錐側面積為$\sqrt{2}π$,AB是圓O的直徑,點C是圓O上的點,且$BC=\sqrt{2}$.
(Ⅰ)求異面直線PA與BC所成角;
(Ⅱ)點E在線段PB上,求CE+OE的最小值.

查看答案和解析>>

科目: 來源: 題型:填空題

6.已知直線l與球O有且只有一個公共點P,從直線l出發(fā)的兩個半平面α,β截球O的兩個截面圓的半徑分別為1、2,二面角α-l-β的平面角為$\frac{2π}{3}$,則球O的表面積$\frac{112}{3}π$.

查看答案和解析>>

科目: 來源: 題型:選擇題

5.已知平面α∩平面β=直線l,點A,C∈α,點B,D∈β,且A,B,C,D∉l,點M,N分別是線段AB,CD的中點.( 。
A.當|CD|=2|AB|時,M,N不可能重合
B.M,N可能重合,但此時直線AC與l不可能相交
C.當直線AB,CD相交,且AC∥l時,BD可與l相交
D.當直線AB,CD異面時,MN可能與l平行

查看答案和解析>>

科目: 來源: 題型:選擇題

4.一個幾何體的三視圖如圖所示,則該幾何體的表面積是(  )
A.$(1+\sqrt{2}){m^2}$B.$(1+2\sqrt{2}){m^2}$C.$(2+\sqrt{2}){m^2}$D.$(2+2\sqrt{2}){m^2}$

查看答案和解析>>

科目: 來源: 題型:選擇題

3.已知直線m,n和平面α,下列推理正確的是( 。
A.$\left.{\begin{array}{l}{m⊥n}\\{n?α}\end{array}}\right\}⇒m⊥α$B.$\left.{\begin{array}{l}{m⊥n}\\{n⊥α}\end{array}}\right\}⇒m∥α$C.$\left.{\begin{array}{l}{m⊥α}\\{n∥α}\end{array}}\right\}⇒m⊥n$D.$\left.{\begin{array}{l}{m∥α}\\{n?α}\end{array}}\right\}⇒m∥n$

查看答案和解析>>

同步練習冊答案