相關(guān)習(xí)題
 0  236687  236695  236701  236705  236711  236713  236717  236723  236725  236731  236737  236741  236743  236747  236753  236755  236761  236765  236767  236771  236773  236777  236779  236781  236782  236783  236785  236786  236787  236789  236791  236795  236797  236801  236803  236807  236813  236815  236821  236825  236827  236831  236837  236843  236845  236851  236855  236857  236863  236867  236873  236881  266669 

科目: 來源: 題型:選擇題

16.在調(diào)查分析某班級數(shù)學(xué)成績與物理成績的相關(guān)關(guān)系時,對數(shù)據(jù)進(jìn)行統(tǒng)計分析得到如下散點圖,用回歸直線$\hat y=bx+a$近似刻畫其關(guān)系,根據(jù)圖形,b的數(shù)值最有可能是( 。
A.0B.1.55C.0.45D.-0.24

查看答案和解析>>

科目: 來源: 題型:解答題

15.已知函數(shù)f(x)=$\frac{{m{x^2}+ax}}{{1+{x^2}}}$是奇函數(shù).
(1)求m的值;
(2)若f(x)=$\frac{{m{x^2}+ax}}{{1+{x^2}}}$在(1,+∞)上遞減,根據(jù)單調(diào)性的定義求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

14.設(shè)集合A=[0,1),B=[1,2],函數(shù)f(x)=$\left\{\begin{array}{l}x+\frac{1}{2},x∈A\\ 2({1-x}),x∈B\end{array}$,若x0∈A,且f[f(x0)]∈A,則x0的取值為$\frac{1}{2}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

13.已知定義在R上的函數(shù)f(x)滿足:y=f(x-1)的圖象關(guān)于(1,0)點對稱,且當(dāng)x≥0時恒有$f(x-\frac{3}{2})=f(x+\frac{1}{2})$,當(dāng)x∈[0,2)時,f(x)=ex-1,則f(2016)+f(-2017)=( 。
A.-1-eB.e-1C.1-eD.e+1

查看答案和解析>>

科目: 來源: 題型:選擇題

12.若$x∈({e,{e^2}}),a=lnx,b={({\frac{1}{2}})^{lnx}},c={e^{lnx}}$,則a,b,c的大小關(guān)系為( 。
A.c>b>aB.c>a>bC.a>b>cD.b>c>a

查看答案和解析>>

科目: 來源: 題型:選擇題

11.已知θ∈(0,π),tanθ=-$\frac{3}{2}$,則cosθ=(  )
A.$\frac{3}{{\sqrt{13}}}$B.$-\frac{2}{{\sqrt{13}}}$C.$\frac{2}{{\sqrt{13}}}$D.$-\frac{3}{{\sqrt{13}}}$

查看答案和解析>>

科目: 來源: 題型:解答題

10.設(shè)函數(shù)f(x)=$\frac{1}{2}$mx2-2x+ln(x+1)(m∈R).
(Ⅰ)判斷x=1能否為函數(shù)f(x)的極值點,并說明理由;
(Ⅱ)若存在m∈[-4,-1),使得定義在[1,t]上的函數(shù)g(x)=f(x)-ln(x+1)+x3在x=1處取得最大值,求實數(shù)t取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知圓C:x2+y2+2x-4y+3=0.
(1)若圓C的切線在x軸和y軸上的截距相等,求此切線的方程;
(2)從圓C外一點P(x1,y1)向該圓引一條切線,切點為M,O為坐標(biāo)原點,且有|PM|=|PO|,求|PM|的最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

8.已知圓心在直線x+y-1=0上且過點A(2,2)的圓C1與直線3x-4y+5=0相切,其半徑小于5.
(1)若C2圓與圓C1關(guān)于直線x-y=0對稱,求圓C2的方程;
(2)過直線y=2x-6上一點P作圓C2的切線PC,PD,切點為C,D,當(dāng)四邊形PCC2D面積最小時,求直線CD的方程.

查看答案和解析>>

科目: 來源: 題型:解答題

7.在四棱錐P-ABCD中,△ABC為正三角形,AB⊥AD,AC⊥CD,PA⊥平面ABCD,PC與平面ABCD所成角為45°
(1)若E為PC的中點,求證:PD⊥平面ABE;
(2)若CD=$\sqrt{3}$,求點B到平面PCD的距離.

查看答案和解析>>

同步練習(xí)冊答案