相關(guān)習題
 0  236907  236915  236921  236925  236931  236933  236937  236943  236945  236951  236957  236961  236963  236967  236973  236975  236981  236985  236987  236991  236993  236997  236999  237001  237002  237003  237005  237006  237007  237009  237011  237015  237017  237021  237023  237027  237033  237035  237041  237045  237047  237051  237057  237063  237065  237071  237075  237077  237083  237087  237093  237101  266669 

科目: 來源: 題型:填空題

12.設l1為曲線f(x)=ex+x(e為自然對數(shù)的底數(shù))的切線,直線l2的方程為2x-y+3=0,且l1∥l2,則直線l1與l2的距離為$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目: 來源: 題型:填空題

11.已知f(x)=x+alnx(a>0)對于區(qū)間[1,3]內(nèi)的任意兩個相異實數(shù)x1,x2,恒有$|f({x_1})-f({x_2})|<|\frac{1}{x_1}-\frac{1}{x_2}|$成立,則實數(shù)a的取值范圍是(0,$\frac{8}{3}$).

查看答案和解析>>

科目: 來源: 題型:選擇題

10.如圖所示,用一邊長為$\sqrt{2}$的正方形硬紙,按各邊中點垂直折起四個小三角形,做成一個蛋巢,將體積為$\frac{4π}{3}$的雞蛋(視為球體)放入其中,蛋巢形狀保持不變,則雞蛋(球體)離蛋巢底面的最短距離為( 。
A.$\frac{\sqrt{2}-1}{2}$B.$\frac{\sqrt{2}+1}{2}$C.$\frac{\sqrt{6}-1}{2}$D.$\frac{\sqrt{3}-1}{2}$

查看答案和解析>>

科目: 來源: 題型:選擇題

9.函數(shù)$f(x)=Asin(ωx+\frac{π}{4})(ω>0)$的圖象與x軸交點的橫坐標構(gòu)成一個公差為$\frac{π}{3}$的等差數(shù)列,要得到函數(shù)g(x)=Acosωx的圖象,只需將f(x)的圖象(  )
A.向左平移$\frac{π}{12}$個單位B.向右平移$\frac{π}{4}$個單位
C.向左平移$\frac{π}{4}$個單位D.向右平移$\frac{3π}{4}$個單位

查看答案和解析>>

科目: 來源: 題型:選擇題

8.已知向量$\overrightarrow{BA}=(1,-3)$,向量$\overrightarrow{BC}=(4,-2)$,則△ABC的形狀為( 。
A.等腰直角三角形B.等邊三角形
C.直角非等腰三角形D.等腰非直角三角形

查看答案和解析>>

科目: 來源: 題型:選擇題

7.已知集合A={x|x2+3x≤0},集合B={n|n=2k+1,k∈Z},則A∩B=( 。
A.{-1,1}B.{1,3}C.{-3,-1}D.{-3,-1,1,3}

查看答案和解析>>

科目: 來源: 題型:選擇題

6.已知$\frac{1-ai}{1+i}=b-i$(a,b∈R),其中i為虛數(shù)單位,則a+b=( 。
A.0B.1C.-1D.2

查看答案和解析>>

科目: 來源: 題型:解答題

5.已知,函數(shù)f(x)=|x+a|+|x-b|.
(Ⅰ)當a=1,b=2時,求不等式f(x)<4的解集;
(Ⅱ)若a,b∈R,且$\frac{1}{2a}$+$\frac{2}$=1,求證:f(x)≥$\frac{9}{2}$;并求f(x)=$\frac{9}{2}$時,a,b的值.

查看答案和解析>>

科目: 來源: 題型:解答題

4.已知,函數(shù)f(x)=2x-$\frac{1}{x}$-alnx(a∈R).
(Ⅰ)當a=3時,求f(x)的單調(diào)區(qū)間;
(Ⅱ)設g(x)=f(x)-x+2alnx,且g(x)有兩個極值點x1,x2,其中x1<x2,若g(x1)-g(x2)>t恒成立,求t的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

3.在正方形ABCD中,AB=AD=2,M,N分別是邊BC,CD上的動點,當|$\overrightarrow{AM}$|•|$\overrightarrow{AN}$|=4時,則|$\overrightarrow{MN}$|的取值范圍是$[\sqrt{2},2]$.

查看答案和解析>>

同步練習冊答案