相關(guān)習(xí)題
 0  238276  238284  238290  238294  238300  238302  238306  238312  238314  238320  238326  238330  238332  238336  238342  238344  238350  238354  238356  238360  238362  238366  238368  238370  238371  238372  238374  238375  238376  238378  238380  238384  238386  238390  238392  238396  238402  238404  238410  238414  238416  238420  238426  238432  238434  238440  238444  238446  238452  238456  238462  238470  266669 

科目: 來源: 題型:選擇題

15.《張丘建算經(jīng)》卷上第22題為:“今有女善織,日益功疾,且從第2天起,每天比前一天多織相同量的布,若第一天織5尺布,現(xiàn)有一月(按30天計(jì)),共織390尺布”,則該女最后一天織多少尺布?(  )
A.18B.20C.21D.25

查看答案和解析>>

科目: 來源: 題型:選擇題

14.命題“?x0∈R,${x_0}^2-{x_0}-1>0$”的否定是(  )
A.?x∈R,x2-x-1≤0B.?x∈R,x2-x-1>0
C.?x0∈R,${x_0}^2-{x_0}-1≤0$D.?x0∈R,${x_0}^2-{x_0}-1≥0$

查看答案和解析>>

科目: 來源: 題型:選擇題

13.已知集合M={x|x2<1},N={x|2x>1},則M∩N=(  )
A.B.{x|0<x<1}C.{x|x<0}D.{x|x<1}

查看答案和解析>>

科目: 來源: 題型:解答題

12.如圖,在△ABC中,∠B=30°,AC=2$\sqrt{5}$,D是邊AB上一點(diǎn).
(1)求△ABC面積的最大值;
(2)若CD=2,△ACD的面積為4,∠ACD為銳角,求BC的長.

查看答案和解析>>

科目: 來源: 題型:填空題

11.已知2a+b-ab=0(a>0,b>0),當(dāng)ab取得最小值時(shí),曲線$\frac{x|x|}{a}-\frac{y|y|}=1$上的點(diǎn)到直線$y=\sqrt{2}x$的距離的取值范圍為(0,$\frac{2\sqrt{6}}{3}$].

查看答案和解析>>

科目: 來源: 題型:選擇題

10.若集合A={(m,n)|(m+1)+(m+2)+…+(m+n)=102015,m∈N,n∈N*},則集合A中的元素個(gè)數(shù)是( 。
A.2016B.2017C.2018D.2019

查看答案和解析>>

科目: 來源: 題型:解答題

9.如圖,在平面直角坐標(biāo)系xOy中,圓O:x2+y2=4與y軸的正半軸交于點(diǎn)A,以A為圓心的圓x2+(y-2)2=r2(r>0)與圓O交于B、C兩點(diǎn).
(1)求$\overrightarrow{AB}$•$\overrightarrow{AC}$的取值范圍;
(2)設(shè)P是圓O上異于B、C的任一點(diǎn),直線PB、PC與y軸分別交于點(diǎn)M、N,求S△POM•S△PON的最大值.

查看答案和解析>>

科目: 來源: 題型:選擇題

8.已知方程x2+(4+i)x+4+ai=0(a∈R)有實(shí)根b,且z=a+bi,則復(fù)數(shù)z的共軛復(fù)數(shù)等于( 。
A.2-2iB.2+2iC.-2+2iD.-2-2i

查看答案和解析>>

科目: 來源: 題型:解答題

7.已知數(shù)列{an}滿足a1=3,an+1=an2+2an,n∈N*,設(shè)bn=log2(an+1).
(I)求{an}的通項(xiàng)公式;
(II)求證:1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{_{n}-1}$<n(n≥2);
(III)若${2^{c_n}}$=bn,求證:2≤${(\frac{{{c_{n+1}}}}{c_n})^n}$<3.

查看答案和解析>>

科目: 來源: 題型:解答題

6.橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點(diǎn)與拋物線C2:y2=2px(p>0)的焦點(diǎn)重合,曲線C1與C2相交于點(diǎn)($\frac{2}{3}$,$\frac{2}{3}$$\sqrt{6}$).
(I)求橢圓C1的方程;
(II)過右焦點(diǎn)F2的直線l(與x軸不重合)與橢圓C1交于A、C兩點(diǎn),線段AC的中點(diǎn)為G,連接OG并延長交橢圓C1于B點(diǎn)(O為坐標(biāo)原點(diǎn)),求四邊形OABC的面積S的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案