相關(guān)習(xí)題
 0  241221  241229  241235  241239  241245  241247  241251  241257  241259  241265  241271  241275  241277  241281  241287  241289  241295  241299  241301  241305  241307  241311  241313  241315  241316  241317  241319  241320  241321  241323  241325  241329  241331  241335  241337  241341  241347  241349  241355  241359  241361  241365  241371  241377  241379  241385  241389  241391  241397  241401  241407  241415  266669 

科目: 來源: 題型:選擇題

20.已知點P為圓(x-2)2+y2=1上的點,直線l1為y=$\frac{\sqrt{2}}{2}$x,l2為y=-$\frac{\sqrt{2}}{2}$x,P到l1、l2的距離分別為d1、d2,那么d1d2的最小值為(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{2}{9}$D.$\frac{1}{6}$

查看答案和解析>>

科目: 來源: 題型:選擇題

19.已知F1,F(xiàn)2是雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左右焦點,P為雙曲線右支上一點,PF1與以原點為圓心a為半徑的圓相切,切點為M,若$\overrightarrow{OM}$=$\frac{1}{2}$($\overrightarrow{O{F}_{1}}+\overrightarrow{OP}$),那么該雙曲線的離心率為( 。
A.$\sqrt{5}$B.$\frac{\sqrt{5}}{2}$C.$\frac{\sqrt{10}}{2}$D.$\sqrt{5}$-1

查看答案和解析>>

科目: 來源: 題型:解答題

18.已知$\overrightarrow a$=(x-$\sqrt{2}$,y),$\overrightarrow b$=(x+$\sqrt{2}$,y).動點M(x,y)滿足$|{\overrightarrow a}|+|{\overrightarrow b}|$=2$\sqrt{3}$
(1)求點M的軌跡C的方程;
(2)直線l與C交于A,B兩點,坐標(biāo)原點O到l得距離為$\frac{{\sqrt{3}}}{2}$,求△ABO面積的最大值.

查看答案和解析>>

科目: 來源: 題型:解答題

17.已知三棱錐A-BCD中,△ABC是等腰直角三角形,且AC⊥BC,BC=2,AD⊥平面BCD,AD=1.
(1)求證:平面ABC⊥平面ACD;
(2)若E為AB中點,求點A到平面CED的距離.
(3)求三棱錐A-BCD的外接球的體積(球體積公式V=$\frac{4}{3}π{R^3}$.R為球的半徑)

查看答案和解析>>

科目: 來源: 題型:解答題

16.設(shè)函數(shù)f(x)=log0.5x+log0.5(1-x).
(1)求f(x)的定義域;
(2)指出f(x)的單調(diào)遞減區(qū)間(不必證明).

查看答案和解析>>

科目: 來源: 題型:填空題

15.三角形ABC中,BC=4,且$AB=\sqrt{3}AC$,則三角形ABC面積最大值為$4\sqrt{3}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

14.已知銳角△ABC的外接圓半徑為$\frac{{\sqrt{2}}}{2}$BC,且AB=2$\sqrt{2}$,AC=3,則BC=( 。
A.$\sqrt{29}$B.$\sqrt{5}$C.2D.5

查看答案和解析>>

科目: 來源: 題型:解答題

13.已知$2sin\frac{x}{2}-cos\frac{x}{2}=0$.
(1)求tanx;
(2)求$\frac{cos2x}{{\sqrt{2}cos({\frac{π}{4}+x})sinx}}$的值.

查看答案和解析>>

科目: 來源: 題型:填空題

12.三角形ABC中,BC=4,且sinAcotB+cosA=$\sqrt{3}$,則三角形ABC面積最大值為4$\sqrt{6}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

11.已知$0<α<\frac{π}{2},\frac{π}{2}<β<π$,$cos(α+\frac{π}{4})=\frac{1}{3}$,$sin(\frac{β}{2}+\frac{π}{4})=\frac{{\sqrt{3}}}{3}$,則$cos(α-\frac{β}{2})$=( 。
A.$-\frac{{\sqrt{3}}}{3}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{6}}}{9}$D.$-\frac{{\sqrt{6}}}{9}$

查看答案和解析>>

同步練習(xí)冊答案