相關(guān)習(xí)題
 0  245515  245523  245529  245533  245539  245541  245545  245551  245553  245559  245565  245569  245571  245575  245581  245583  245589  245593  245595  245599  245601  245605  245607  245609  245610  245611  245613  245614  245615  245617  245619  245623  245625  245629  245631  245635  245641  245643  245649  245653  245655  245659  245665  245671  245673  245679  245683  245685  245691  245695  245701  245709  266669 

科目: 來源: 題型:選擇題

20.根據(jù)如下樣本數(shù)據(jù)
x34567
y4.0a+b-1-0.50.5-0.2
得到的回歸方程為$\widehat{y}$=bx+a,若樣本中心為(5,0.9),則x每減少1個(gè)單位,y就( 。
A.增加1.4個(gè)單位B.減少1.4個(gè)單位C.增加1.2個(gè)單位D.減少1.2個(gè)單位

查看答案和解析>>

科目: 來源: 題型:填空題

19.設(shè)α∈(0,$\frac{π}{2}$),β∈[0,$\frac{π}{2}$],則2α-$\frac{β}{3}$的取值范圍是$(-\frac{π}{6},π)$.

查看答案和解析>>

科目: 來源: 題型:選擇題

18.${∫}_{0}^{\frac{π}{2}}$sin2$\frac{x}{2}$dx等于( 。
A.$\frac{π}{4}$B.$\frac{π}{2}$-1C.2D.$\frac{π-2}{4}$

查看答案和解析>>

科目: 來源: 題型:解答題

17.化簡:$\frac{(1+sinx+cosx)(sin\frac{x}{2}-cos\frac{x}{2})}{\sqrt{2+2cosx}}$(180°<x<360°).

查看答案和解析>>

科目: 來源: 題型:解答題

16.已知數(shù)列an=$\frac{1}{\sqrt{a}+\sqrt{a+1}}$,求an的通項(xiàng)公式.

查看答案和解析>>

科目: 來源: 題型:解答題

15.某牛奶廠要將一批牛奶用汽車從所在城市甲運(yùn)至城市乙,已知從城市甲到城市乙只有兩條公路,且運(yùn)費(fèi)由廠商承擔(dān).若廠商恰能在約定日期(×月×日)將牛奶送到,則城市乙的銷售商一次性支付給牛奶廠20萬元;若在約定日期前送到,每提前一天銷售商將多支付給牛奶廠1萬元;若在約定日期后送到,每遲到一天銷售商將少支付給牛奶廠1萬元.為保證牛奶新鮮度,汽車只能在約定日期的前兩天出發(fā),且只能選擇其中的一條公路運(yùn)送牛奶,已知下表內(nèi)的信息:
統(tǒng)計(jì)信息在不堵車的情況下到達(dá)城市乙所需時(shí)間(天)在堵車的情況下到達(dá)城市乙所需時(shí)間(天)堵車的概率運(yùn)費(fèi)(萬元)
公路123$\frac{1}{10}$1.6
公路214$\frac{1}{2}$0.8
(Ⅰ)記汽車選擇公路1運(yùn)送牛奶時(shí)牛奶廠獲得的毛收入為ξ(單位:萬元),求ξ的分布列和數(shù)學(xué)期望E(ξ);
(Ⅱ)如果你是牛奶廠的決策者,你選擇哪條公路運(yùn)送牛奶有可能讓牛奶廠獲得的毛收入更多?
(注:毛收入=銷售商支付給牛奶廠的費(fèi)用-運(yùn)費(fèi))

查看答案和解析>>

科目: 來源: 題型:填空題

14.已知直線$\sqrt{2}$ax+by=2(其中a、b為非零實(shí)數(shù))與圓x2+y2=1相交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn),且△AOB為直角三角形,則$\frac{1}{a^2}+\frac{2}{b^2}$的最小值為1.

查看答案和解析>>

科目: 來源: 題型:解答題

13.已知數(shù)列{an}滿足a1=$\frac{1}{2}$,an+1=$\left\{\begin{array}{l}{2{a}_{n}+2n-2,n為奇數(shù)}\\{-{a}_{n}-n,n為偶數(shù)}\end{array}\right.$數(shù)列{an}的前n項(xiàng)和為Sn,bn=a2n,其中n∈N*
(Ⅰ)試求a2,a3的值并證明數(shù)列{bn}為等比數(shù)列;
(Ⅱ)設(shè)cn=bn+a2n+1求數(shù)列$\left\{{\frac{1}{{{c_n}{c_{n+1}}}}}\right\}$的前n項(xiàng)和.

查看答案和解析>>

科目: 來源: 題型:填空題

12.設(shè)O為坐標(biāo)原點(diǎn),點(diǎn)$A({\frac{1}{4},1}),若M({x,y})$滿足不等式組$\left\{\begin{array}{l}x+y≥2\\ x≤1\\ y≤2\end{array}\right.,則\overrightarrow{OM}•\overrightarrow{OA}$的最小值是$\frac{5}{4}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

11.已知集合A={0,1,2,3},集合B={x|x=2a,a∈A},則A∩B=( 。
A.{0}B.{2}C.{0,2}D.{0,1,2,3}

查看答案和解析>>

同步練習(xí)冊答案