相關(guān)習(xí)題
 0  245964  245972  245978  245982  245988  245990  245994  246000  246002  246008  246014  246018  246020  246024  246030  246032  246038  246042  246044  246048  246050  246054  246056  246058  246059  246060  246062  246063  246064  246066  246068  246072  246074  246078  246080  246084  246090  246092  246098  246102  246104  246108  246114  246120  246122  246128  246132  246134  246140  246144  246150  246158  266669 

科目: 來源: 題型:選擇題

10.下列命題的說法錯(cuò)誤的是( 。
A.若復(fù)合命題p∧q為假命題,則p,q都是假命題
B.“x=1”是“x2-3x+2=0”的充分不必要條件
C.對于命題p:?x∈R,x2+x+1>0 則¬p:?x∈R,x2+x+1≤0
D.命題“若x2-3x+2=0,則x=1”的逆否命題為:“若x≠1,則x2-3x+2≠0”

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知函數(shù)f(x)=$\frac{a•{2}^{x}+1}{{2}^{x}-a}$(a為常數(shù))
(1)證明:a=1是函數(shù)f(x)為奇函數(shù)的充分不必要條件;
(2)如果存在x0∈R,使得f(x0)=1,求a的取值范圍;
(3)若f(x)在[0,1]上是單調(diào)遞減函數(shù),求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

8.在平面直角坐標(biāo)系xOy中,點(diǎn)P(xP,yP)和點(diǎn)Q(xQ,yQ)滿足$\left\{\begin{array}{l}{x_Q}={x_P}+{y_P}\;\\{y_Q}=-{x_P}+{y_P}\;\end{array}$按此規(guī)則由點(diǎn)P得到點(diǎn)Q,稱為直角坐標(biāo)平面的一個(gè)“點(diǎn)變換”.在此變換下,若$\frac{{|\overrightarrow{OP}|}}{{|\overrightarrow{OQ}|}}$=m,向量$\overrightarrow{OP}$與$\overrightarrow{OQ}$的夾角為θ,其中O為坐標(biāo)原點(diǎn),則msinθ的值為$\frac{1}{2}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

7.設(shè)∠POQ=60°在OP、OQ上分別有動(dòng)點(diǎn)A,B,若$\overrightarrow{OA}•\overrightarrow{OB}$=6,△OAB的重心是G,則|$\overrightarrow{OG}$|的最小值是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目: 來源: 題型:選擇題

6.下列說法正確的是(  )
A.“p∨q為真”是“p∧q為真”的充分不必要條件
B.若數(shù)據(jù)x1,x2,x3,…,xn的方差為1,則2x1,2x2,2x3,…,2xn的方差為2
C.在區(qū)間[0,π]上隨機(jī)取一個(gè)數(shù)x,則事件“sinx+cosx≥$\frac{\sqrt{6}}{2}$”發(fā)生的概率為$\frac{1}{2}$
D.已知隨機(jī)變量X服從正態(tài)分布N(2,σ2),且P(X≤4)=0.84,則P(X≤0)=0.16

查看答案和解析>>

科目: 來源: 題型:選擇題

5.定義在(0,+∞)上的可導(dǎo)函數(shù)f(x)滿足xf′(x)-f(x)=x,且f(1)=1.現(xiàn)給出關(guān)于函數(shù)f(x)的下列結(jié)論,正確的個(gè)數(shù)為( 。
①函數(shù)f(x)在$({\frac{1}{e},+∞})$上單調(diào)遞增
②函數(shù)f(x)的最小值為$-\frac{1}{e^2}$
③函數(shù)f(x)有且只有一個(gè)零點(diǎn)
④對于任意x>0,都有f(x)≤x2
A.1B.2C.3D.4

查看答案和解析>>

科目: 來源: 題型:填空題

4.在△ABC中,內(nèi)角A,B,C的所對邊分別是a,b,c,有如下下列命題:
①若A>B>C,則sinA>sinB>sinC;
②若$\frac{cosA}{a}=\frac{cosB}=\frac{cosC}{c}$,則△ABC為等邊三角形;
③若sin2A=sin2B,則△ABC為等腰三角形;
④若(1+tanA)(1+tanB)=2,則△ABC為鈍角三角形;
⑤存在A,B,C,使得tanAtanBtanC<tanA+tanB+tanC成立.
其中正確的命題為①②④(寫出所有正確命題的序號)

查看答案和解析>>

科目: 來源: 題型:解答題

3.已知向量$\overrightarrow{a}$=(sinx,2cosx),$\overrightarrow$=($2\sqrt{3}$cosx,-cosx),函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$
(Ⅰ)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(Ⅱ)在△ABC中,若∠A滿足$f(A-\frac{π}{6})=1$,且△ABC的面積為8,求△ABC周長的最小值.

查看答案和解析>>

科目: 來源: 題型:填空題

2.射擊比賽每人射2次,約定全部不中得0分,只中一彈得10分,中兩彈得15分,某人每次射擊的命中率均為$\frac{4}{5}$,則他得分的數(shù)學(xué)期望是12.8分.

查看答案和解析>>

科目: 來源: 題型:解答題

1.已知函數(shù)f(x)=$\frac{1}{x}$-x+alnx(a∈R)(e=2.71828…是自然對數(shù)的底數(shù)).
(1)若函數(shù)f(x)在定義域上不單調(diào),求a的取值范圍;
(2)設(shè)函數(shù)f(x)的兩個(gè)極值點(diǎn)為x1和x2,記過點(diǎn)A(x1,f(x1)),B(x2,f(x2))的直線的斜率為k,是否存在實(shí)數(shù)a,使得k$≤\frac{2e}{{e}^{2}-1}$a-2?若存在,求出a的取值集合;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案