相關(guān)習(xí)題
 0  246359  246367  246373  246377  246383  246385  246389  246395  246397  246403  246409  246413  246415  246419  246425  246427  246433  246437  246439  246443  246445  246449  246451  246453  246454  246455  246457  246458  246459  246461  246463  246467  246469  246473  246475  246479  246485  246487  246493  246497  246499  246503  246509  246515  246517  246523  246527  246529  246535  246539  246545  246553  266669 

科目: 來源: 題型:解答題

9.某公司為確定下一年度投入某種產(chǎn)品的宣傳費,需了解年宣傳費x(單位:千元)對年銷售量y(單位:t)和年利潤z(單位:千元)的影響,對近8年的年宣傳費xi和年銷售量yi(i=1,2,…,8)數(shù)據(jù)作了初步處理,得到下面的散點圖及一些統(tǒng)計量的值.

$\overline{x}$$\overline{y}$$\overline{w}$$\sum _{i=1}^{8}$(xi-$\overline{x}$)2$\sum _{i=1}^{8}$(wi-$\overline{w}$)2$\sum _{i=1}^{8}$(xi-$\overline{x}$)(yi-$\overline{y}$)$\sum _{i=1}^{8}$(wi-$\overline{w}$)(yi-$\overline{y}$)
46.65636.8289.81.61469108.8
表中wi=$\sqrt{x}$i,$\overline{w}$=$\frac{1}{8}$$\sum _{i=1}^{8}w{\;}_{i}$
(Ⅰ)根據(jù)散點圖判斷,y=a+bx與y=c+d$\sqrt{x}$哪一個適宜作為年銷售量y關(guān)于年宣傳費x的回歸方程類型?(給出判斷即可,不必說明理由)
(Ⅱ)根據(jù)(Ⅰ)的判斷結(jié)果及表中數(shù)據(jù),建立y關(guān)于x的回歸方程;
(Ⅲ)已知這種產(chǎn)品的年利潤z與x、y的關(guān)系為z=0.2y-x.根據(jù)(Ⅱ)的結(jié)果回答下列問題:
(i)年宣傳費x=49時,年銷售量及年利潤的預(yù)報值是多少?
(ii)年宣傳費x為何值時,年利潤的預(yù)報值最大?
附:對于一組數(shù)據(jù)(u1 v1),(u2 v2)…..(un vn),其回歸線v=α+βu的斜率和截距的最小二乘估計分別為:$\widehat{β}$=$\frac{\sum_{i=1}^{n}({u}_{1}-\overline{u})({v}_{1}-\overline{v})}{\sum_{i=1}^{n}({u}_{1}-\overline{u})^{2}}$,$\widehat{α}$=$\overline{v}$-$\widehat{β}$$\overline{u}$.

查看答案和解析>>

科目: 來源: 題型:解答題

8.如圖,四邊形ABCD為菱形,G為AC與BD的交點,BE⊥平面ABCD.
(Ⅰ)證明:平面AEC⊥平面BED;
(Ⅱ)若∠ABC=120°,AE⊥EC,三棱錐E-ACD的體積為$\frac{\sqrt{6}}{3}$,求該三棱錐的側(cè)面積.

查看答案和解析>>

科目: 來源: 題型:選擇題

7.圓柱被一個平面截去一部分后與半球(半徑為r)組成一個幾何體,該幾何體三視圖中的正視圖和俯視圖如圖所示.若該幾何體的表面積為16+20π,則r=(  )
A.1B.2C.4D.8

查看答案和解析>>

科目: 來源: 題型:選擇題

6.如果3個正整數(shù)可作為一個直角三角形三條邊的邊長,則稱這3個數(shù)為一組勾股數(shù).從1,2,3,4,5中任取3個不同的數(shù),則這3個數(shù)構(gòu)成一組勾股數(shù)的概率為( 。
A.$\frac{3}{10}$B.$\frac{1}{5}$C.$\frac{1}{10}$D.$\frac{1}{20}$

查看答案和解析>>

科目: 來源: 題型:解答題

5.已知拋物線C1:x2=4y的焦點F也是橢圓C2:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1(a>b>0)的一個焦點.C1與C2的公共弦長為2$\sqrt{6}$.
(Ⅰ)求C2的方程;
(Ⅱ)過點F的直線l與C1相交于A、B兩點,與C2相交于C、D兩點,且$\overrightarrow{AC}$與$\overrightarrow{BD}$同向.
(1)若|AC|=|BD|,求直線l的斜率;
(2)設(shè)C1在點A處的切線與x軸的交點為M,證明:直線l繞點F旋轉(zhuǎn)時,△MFD總是鈍角三角形.

查看答案和解析>>

科目: 來源: 題型:解答題

4.已知函數(shù)f(x)=$\frac{ax}{{{{(x+r)}^2}}}$(a>0,r>0)
(1)求f(x)的定義域,并討論f(x)的單調(diào)性;
(2)若$\frac{a}{r}$=400,求f(x)在(0,+∞)內(nèi)的極值.

查看答案和解析>>

科目: 來源: 題型:解答題

3.設(shè)橢圓E的方程為$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),點O為坐標(biāo)原點,點A的坐標(biāo)為(a,0),點B的坐標(biāo)為(0,b),點M在線段AB上,滿足|BM|=2|MA|,直線OM的斜率為$\frac{{\sqrt{5}}}{10}$.
(1)求E的離心率e;
(2)設(shè)點C的坐標(biāo)為(0,-b),N為線段AC的中點,證明:MN⊥AB.

查看答案和解析>>

科目: 來源: 題型:解答題

2.在直角坐標(biāo)系xOy中,曲線C1:$\left\{\begin{array}{l}{x=tcosα}\\{y=tsinα}\end{array}\right.$(t為參數(shù),t≠0),其中0≤α≤π,在以O(shè)為極點,x軸正半軸為極軸的極坐標(biāo)系中,曲線C2:ρ=2sinθ,C3:ρ=2$\sqrt{3}$cosθ.
(1)求C2與C3交點的直角坐標(biāo);
(2)若C1與C2相交于點A,C1與C3相交于點B,求|AB|的最大值.

查看答案和解析>>

科目: 來源: 題型:解答題

1.已知橢圓C:9x2+y2=m2(m>0),直線l不過原點O且不平行于坐標(biāo)軸,l與C有兩個交點A,B,線段AB的中點為M.
(1)證明:直線OM的斜率與l的斜率的乘積為定值;
(2)若l過點($\frac{m}{3}$,m),延長線段OM與C交于點P,四邊形OAPB能否為平行四邊形?若能,求此時l的斜率;若不能,說明理由.

查看答案和解析>>

科目: 來源: 題型:選擇題

20.程序框圖的算法思路源于我國古代數(shù)學(xué)名著《九章算術(shù)》中的“更相減損術(shù)”,執(zhí)行該程序框圖,若輸入的a,b分別為14,18,則輸出的a=( 。
A.0B.2C.4D.14

查看答案和解析>>

同步練習(xí)冊答案