相關(guān)習(xí)題
 0  246458  246466  246472  246476  246482  246484  246488  246494  246496  246502  246508  246512  246514  246518  246524  246526  246532  246536  246538  246542  246544  246548  246550  246552  246553  246554  246556  246557  246558  246560  246562  246566  246568  246572  246574  246578  246584  246586  246592  246596  246598  246602  246608  246614  246616  246622  246626  246628  246634  246638  246644  246652  266669 

科目: 來(lái)源: 題型:解答題

18.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的一個(gè)頂點(diǎn)恰好是拋物線x2=4$\sqrt{3}$y的焦點(diǎn),且離心率為e=$\frac{1}{2}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)過(guò)原點(diǎn)的直線與橢圓C交于A,B兩點(diǎn),過(guò)橢圓C的右焦點(diǎn)作直線l∥AB交橢圓C于M,N兩點(diǎn).試問(wèn)$\frac{{{{|{AB}|}^2}}}{{|{MN}|}}$是否為定值,若為定值,請(qǐng)求出這個(gè)定值;若不是定值,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

17.若{an}為等差數(shù)列,Sn是其前n項(xiàng)的和,且S11=$\frac{22}{3}$π,{bn}為等比數(shù)列,b5•b7=$\frac{π^2}{4}$,則tan(a6-b6)為(  )
A.$\sqrt{3}$B.±$\sqrt{3}$C.$\frac{{\sqrt{3}}}{3}$D.±$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

16.已知點(diǎn)F(1,0),點(diǎn)P為平面上的動(dòng)點(diǎn),過(guò)點(diǎn)P作直線l:x=-1的垂線,垂足為H,且$\overrightarrow{HP}$•$\overrightarrow{HF}$=$\overrightarrow{FP}$•$\overrightarrow{FH}$.
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)設(shè)點(diǎn)P的軌跡C與x軸交于點(diǎn)M,點(diǎn)A,B是軌跡C上異于點(diǎn)M的不同D的兩點(diǎn),且滿足$\overrightarrow{MA}$•$\overrightarrow{MB}$=0,在A,B處分別作軌跡C的切線交于點(diǎn)N,求點(diǎn)N的軌跡E的方程;
(3)在(2)的條件下,求證:kMN•kAB為定值.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

15.已知角α滿足$\frac{1}{|sinα|}=\frac{1}{sinα}$,且lg(cosα)有意義,a=21-sinα,b=2cosα.c=2tanα
(1)判斷角α所在象限;
(2)若角α的終邊與單位圓相交于點(diǎn)M($\frac{3}{5}$,m),求m的值及比較a,b,c的大小.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

14.已知點(diǎn)p(c,$\frac{3}{2}$c)在以F(c,0)為右焦點(diǎn)的橢圓Γ:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上,斜率為1的直線m過(guò)點(diǎn)F與橢圓Γ交于A,B兩點(diǎn),且與直線l:x=4c交于點(diǎn)M.
(Ⅰ) 求橢圓Γ的離心率e;
(Ⅱ) 試判斷直線PA,PM,PB的斜率是否成等差數(shù)列?若成等差數(shù)列,給出證明;若不成等差數(shù)列,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

13.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1,(a>b>0)$,離心率$e=\frac{{2\sqrt{2}}}{3}$,且過(guò)點(diǎn)$(2\sqrt{2},\frac{1}{3})$,
(1)求橢圓方程;
(2)Rt△ABC以A(0,b)為直角頂點(diǎn),邊AB,BC與橢圓交于B,C兩點(diǎn),求△ABC面積的最大值.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

12.已知圓F1:(x+1)2+y2=8,點(diǎn)F2(1,0),點(diǎn)Q在圓F1上運(yùn)動(dòng),QF2的垂直平分線交QF1于點(diǎn)P.
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)設(shè)M、N分別是曲線C上的兩個(gè)不同點(diǎn),且點(diǎn)M在第一象限,點(diǎn)N在第三象限,若$\overrightarrow{OM}+2\overrightarrow{ON}=2\overrightarrow{O{F_1}}$,O為坐標(biāo)原點(diǎn),求直線MN的斜率;
(3)過(guò)點(diǎn)$S(0,-\frac{1}{3})$的動(dòng)直線l交曲線C于A、B兩點(diǎn),求證:以AB為直徑的圓恒過(guò)定點(diǎn)T(0,1).

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=$\frac{1}{2}{x^2}$+(k-1)x-k+$\frac{3}{2}$,g(x)=xlnx.
(Ⅰ)若函數(shù)g(x)的圖象在(1,0)處的切線l與函數(shù)f(x)的圖象相切,求實(shí)數(shù)k的值;
(Ⅱ)當(dāng)k=0時(shí),證明:f(x)+g(x)>0;
(Ⅲ)設(shè)h(x)=f(x)+g′(x),若h(x)有兩個(gè)極值點(diǎn)x1,x2(x1≠x2),且h(x1)+h(x2)<$\frac{7}{2}$,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=sin$\frac{x}{2}$cos$\frac{x}{2}$-sin2$\frac{x}{2}$.
(1)若函數(shù)g(x)=f(x)-m在(-∞,+∞)上無(wú)零點(diǎn),求實(shí)數(shù)m的取值范圍;
(2)設(shè)A,B,C是△ABC的三個(gè)內(nèi)角,若f(A)=f(B)且A≠B,求f(C)的值.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

9.已知定點(diǎn)F1(-1,0),F(xiàn)2(1,0),P為圓F1:(x+1)2+y2=8上一動(dòng)點(diǎn),點(diǎn)M滿足($\overrightarrow{MP}$+$\overrightarrow{M{F}_{2}}$)•$\overrightarrow{{F}_{2}P}$=0,$\overrightarrow{{F}_{1}M}$=λ$\overrightarrow{{F}_{1}P}$(0≤λ≤1).
(Ⅰ)求動(dòng)點(diǎn)M的軌跡C的方程;
(Ⅱ)設(shè)點(diǎn)M坐標(biāo)為(x,y),求證:|MF2|=$\sqrt{2}$-$\frac{\sqrt{2}}{2}$x;
(Ⅲ)過(guò)點(diǎn)F2作直線l交C于A,B兩點(diǎn),求$\frac{1}{|A{F}_{2}|}$+$\frac{1}{|B{F}_{2}|}$的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案