相關(guān)習(xí)題
 0  247717  247725  247731  247735  247741  247743  247747  247753  247755  247761  247767  247771  247773  247777  247783  247785  247791  247795  247797  247801  247803  247807  247809  247811  247812  247813  247815  247816  247817  247819  247821  247825  247827  247831  247833  247837  247843  247845  247851  247855  247857  247861  247867  247873  247875  247881  247885  247887  247893  247897  247903  247911  266669 

科目: 來源: 題型:選擇題

1.對(duì)于命題:p:?x∈(0,$\frac{π}{2}$),sinx+cosx>1;q:?x∈R,sin2x+cos2x>1,則下列判斷正確的是( 。
A.p假q真B.p真q假C.p假q假D.p真q真

查看答案和解析>>

科目: 來源: 題型:解答題

20.已知?jiǎng)訄AP過定點(diǎn)A(-3,0),且與圓B:(x-3)2+y2=64相切,點(diǎn)P的軌跡為曲線C.設(shè)Q為曲線C上(不在x軸上)的動(dòng)點(diǎn),過點(diǎn)A作OQ的平行線交曲線C于M,N兩點(diǎn).
(1)求曲線C的方程;
(2)求△MNQ的面積S的最大值.

查看答案和解析>>

科目: 來源: 題型:填空題

19.在等差數(shù)列{an}中,a2=3,a3+a7=14,則公差d=$\frac{4}{3}$,an=$\frac{4}{3}n+\frac{1}{3}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

18.設(shè)f(x)=$\left\{\begin{array}{l}{{k}^{2}x+{a}^{2}-k,(x≥0)}\\{{x}^{2}+({a}^{2}+4a)x+(3-a)^{2},(x<0)}\end{array}\right.$,其中a∈R.若對(duì)任意的非零實(shí)數(shù)x1,存在唯一的非零實(shí)數(shù)x2(x1≠x2),使得f(x1)=f(x2)成立,則k的取值范圍為( 。
A.RB.[-4,0]C.[9,33]D.[-33,-9]

查看答案和解析>>

科目: 來源: 題型:選擇題

17.已知f(x)=$\frac{x}{{e}^{x}}$,定義f1(x)=f′(x),f2(x)=[f1(x)]′,…,fn+1(x)=[fn(x)]′,n∈N.經(jīng)計(jì)算f1(x)=$\frac{1-x}{{e}^{x}}$,f2(x)=$\frac{x-2}{{e}^{x}}$,f3(x)=$\frac{3-x}{{e}^{x}}$,…,照此規(guī)律,則f2015(0)=( 。
A.-2015B.2015C.$\frac{2014}{e}$D.-$\frac{2014}{e}$

查看答案和解析>>

科目: 來源: 題型:解答題

16.已知橢圓C1,拋物線C2的焦點(diǎn)均在x軸上,從兩條曲線上各取兩個(gè)點(diǎn),將其坐標(biāo)混合記錄于下表中:
x-$\sqrt{2}$2$\sqrt{6}$9
y$\sqrt{3}$-$\sqrt{2}$-13
(1)求橢圓C1和拋物線C2的標(biāo)準(zhǔn)方程.
(2)過橢圓C1右焦點(diǎn)F的直線l與此橢圓相交于A,B兩點(diǎn),若點(diǎn)P為直線x=4上任意一點(diǎn),試證:直線PA,PF,PB的斜率成等差數(shù)列.

查看答案和解析>>

科目: 來源: 題型:選擇題

15.已知0<a≠1,函數(shù)f(x)=3+$\frac{{a}^{x}-1}{{a}^{x}+1}$+xcosx(-1≤x≤1),設(shè)函數(shù)f(x)的最大值是M,最小值是N,則( 。
A.M+N=8B.M+N=6C.M-N=8D.M-N=6

查看答案和解析>>

科目: 來源: 題型:解答題

14.已知函數(shù)f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$bx2+cx+d在(0,1)內(nèi)既有極大值又有極小值,求c2+c(1+b)的值.

查看答案和解析>>

科目: 來源: 題型:填空題

13.如圖中的程序框圖描述的是“歐幾里得輾轉(zhuǎn)相除法”的算法.若輸入m=37,n=5,則輸出m=2.

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知函數(shù)f(x)=x2+ax-lnx,a∈R
(1)若函數(shù)f(x)在[1,2]上是減函數(shù),求實(shí)數(shù)a的取值范圍
(2)令g(x)=f(x)-x2,是否存在實(shí)數(shù)a,當(dāng)x∈(0,e]時(shí),函數(shù)g(x)的最小值是3?若存在,求出a的值,若不存在,說明理由
(3)當(dāng)x∈(0,e]時(shí),求證:e2x2-$\frac{5}{2}$x>(x+1)lnx.

查看答案和解析>>

同步練習(xí)冊(cè)答案