相關(guān)習(xí)題
 0  252104  252112  252118  252122  252128  252130  252134  252140  252142  252148  252154  252158  252160  252164  252170  252172  252178  252182  252184  252188  252190  252194  252196  252198  252199  252200  252202  252203  252204  252206  252208  252212  252214  252218  252220  252224  252230  252232  252238  252242  252244  252248  252254  252260  252262  252268  252272  252274  252280  252284  252290  252298  266669 

科目: 來源: 題型:選擇題

12.在復(fù)平面內(nèi),復(fù)數(shù)$\frac{-2-3i}{i}$對應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目: 來源: 題型:選擇題

11.下列各數(shù)中最小的數(shù)是( 。
A.111 111(2)B.210(6)C.1 000(4)D.110(8)

查看答案和解析>>

科目: 來源: 題型:解答題

10.某車間為了規(guī)定工時定額,需要確定加工某零件所花費(fèi)的時間,為此作了四次實(shí)驗,得到的數(shù)據(jù)如下:
零件的個數(shù)x(個)2345
加工的時間y(小時)2.5344.5
(1)在給定的坐標(biāo)系中畫出表中數(shù)據(jù)的散點(diǎn)圖;
(2)求出y關(guān)于x的線性回歸方程;
(3)試預(yù)測加工10個零件需要多少時間?(注:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\stackrel{∧}{y}$-$\stackrel{∧}$$\overline{x}$)

查看答案和解析>>

科目: 來源: 題型:選擇題

9.已知四邊形ABCD是橢圓$\frac{{x}^{2}}{4}$+y2=1的內(nèi)接菱形,則四邊形ABCD的內(nèi)切圓方程是(  )
A.x2+y2=$\frac{1}{5}$B.(x-1)2+y2=$\frac{2}{5}$C.x2+y2=$\frac{4}{5}$D.x2+y2=$\frac{3}{5}$

查看答案和解析>>

科目: 來源: 題型:解答題

8.如圖,O為坐標(biāo)原點(diǎn),A和B分別是橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1( a>b>0)和C2:$\frac{{x}^{2}}{{m}^{2}}$+$\frac{{y}^{2}}{{n}^{2}}$=1(m>n>0)上的動點(diǎn),滿足$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,且橢圓C2的離心率為$\frac{\sqrt{2}}{2}$.當(dāng)動點(diǎn)A在x軸上的投影恰為C的右焦點(diǎn)F時,有S△AOF=$\frac{\sqrt{2}}{4}$
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若C1與C2共焦點(diǎn),且C1的長軸與C2的短軸等長,求|$\overrightarrow{AB}$|2的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

7.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的長軸長為8,且離心率為$\frac{{\sqrt{2}}}{2}$.
(1)求橢圓C的方程;
(2)過橢圓C的左焦點(diǎn)F1的直線l交橢圓于M、N兩點(diǎn),且該橢圓上存在點(diǎn)P,使得四邊形MONP(圖形上的字母按此順序排列)恰好為平行四邊形,求直線l的方程.

查看答案和解析>>

科目: 來源: 題型:解答題

6.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),兩定直線l1x=-$\frac{{a}^{2}}{c}$,l2:x=$\frac{{a}^{2}}{c}$,直線l1恰為拋物線E:y2=16x的準(zhǔn)線,直線l:x+2y-4=0與橢圓相切.
(1)求橢圓C的方程;
(2)如果橢圓C的左頂點(diǎn)為A,右焦點(diǎn)為F,過F的直線與橢圓C交于P,Q兩點(diǎn),直線AP,AQ與直線l2分別交于N,M兩點(diǎn),求證:四邊形MNPQ的對角線的交點(diǎn)是定點(diǎn).

查看答案和解析>>

科目: 來源: 題型:選擇題

5.已知A 為橢圓上一點(diǎn),E,F(xiàn) 分別為橢圓的左右焦點(diǎn),∠EAF=90°,設(shè)AE 的延長線交橢圓于B,又|AB|=|AF|,則橢圓的離心率e為( 。
A.$\sqrt{6}$-$\sqrt{3}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{5}-1}{2}$D.$\frac{\sqrt{5}-\sqrt{2}}{2}$

查看答案和解析>>

科目: 來源: 題型:解答題

4.如圖,在平面直角坐標(biāo)系xoy中,橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為e=$\frac{\sqrt{3}}{2}$,過橢圓由焦點(diǎn)F作兩條互相垂直的弦AB與CD.當(dāng)直線AB斜率為0時,弦AB長4.
(1)求橢圓的方程;
(2)若直線AB斜率為1時,求弦AB長;
(3)過橢圓的對稱中心O,作直線L,交橢圓與M,N,三角形FMN是否存在在大面積?若存在,求出它的最大面積值.若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

3.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)過點(diǎn)$({1,\frac{{\sqrt{2}}}{2}})$,離心率為$\frac{{\sqrt{2}}}{2}$.
(1)求橢圓C的方程;
(2)已知直線l1過橢圓C的右焦點(diǎn)F2交C于 M,N兩點(diǎn),點(diǎn)Q為直線l2:x=2上的點(diǎn),且F2Q⊥l1,記直線MN與直線 OQ(O為原點(diǎn))的交點(diǎn)為K,證明:MK=NK.

查看答案和解析>>

同步練習(xí)冊答案