相關(guān)習(xí)題
 0  252514  252522  252528  252532  252538  252540  252544  252550  252552  252558  252564  252568  252570  252574  252580  252582  252588  252592  252594  252598  252600  252604  252606  252608  252609  252610  252612  252613  252614  252616  252618  252622  252624  252628  252630  252634  252640  252642  252648  252652  252654  252658  252664  252670  252672  252678  252682  252684  252690  252694  252700  252708  266669 

科目: 來源: 題型:解答題

20.若函數(shù)f(x)=2sin(ωx+$\frac{π}{3}$),且f(α)=-2f,(β)=0,|α-β|的最小值為$\frac{3π}{4}$,求:
(1)正數(shù)ω的值;
(2)函數(shù)f(x)的最大值及取得最大值時x的集合;
(3)函數(shù)f(x)的遞減區(qū)間.

查看答案和解析>>

科目: 來源: 題型:填空題

19.當(dāng)x$≥\frac{5}{2}$時,不等式$\frac{{x}^{2}-4x+5}{2x-4}$≥a恒成立,則實數(shù)a的取值范圍是(-∞,1].

查看答案和解析>>

科目: 來源: 題型:解答題

18.已知函數(shù)y=sin(2x+$\frac{π}{4}$)+1.
(1)畫出該函數(shù)在長度為一個周期的閉區(qū)間上的簡圖;
(2)求該函數(shù)的對稱中心;
(3)寫出f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目: 來源: 題型:選擇題

17.已知log53=a,log54=b,則log5270可表示為(  )
A.$\frac{3}{2}$abB.3a+$\frac{2}$+1C.3a+$\frac{2}$D.a3+$\sqrt$+1

查看答案和解析>>

科目: 來源: 題型:解答題

16.f(α)=$\frac{sin(\frac{π}{2}-α)cos(10π-α)tan(-α+3π)}{tan(π+α)sin(\frac{5π}{2}+α)}$.
(1)化簡f(α);
(2)若α∈(0,$\frac{π}{2}$),且sin(α-$\frac{π}{6}$)=$\frac{1}{3}$,求f(α)的值.

查看答案和解析>>

科目: 來源: 題型:解答題

15.已知函數(shù)f(x)=sin(2x+φ)的圖象的一個對稱中心為($\frac{π}{3}$,0),若|φ|<$\frac{π}{2}$,求φ的值.

查看答案和解析>>

科目: 來源: 題型:填空題

14.已知函數(shù)f(x)=tan(x+φ)的圖象的-個對稱中心為($\frac{π}{3}$,0)且,|φ|<$\frac{π}{2}$.則φ=$\frac{π}{6}$或-$\frac{π}{3}$.

查看答案和解析>>

科目: 來源: 題型:解答題

13.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)當(dāng)x∈[-$\frac{π}{6}$,$\frac{5π}{6}$]時,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(3)若關(guān)于x的方程f(x)+log2k=0(k為實數(shù))在x∈[$\frac{π}{3}$,$\frac{19π}{24}$]上恒有實數(shù)解,求k的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0.|φ|<$\frac{π}{2}$)的部分函數(shù)圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)若g(x)=1-f(x),求g(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目: 來源: 題型:解答題

11.若$\frac{π}{2}$<α<π,化簡$\frac{cos(α-\frac{π}{2})}{si{n}^{2}(\frac{3π}{2}-α)\sqrt{1+ta{n}^{2}(3π+α)}}$-$\frac{sin(4π+α)\sqrt{1-si{n}^{2}(π+α)}}{co{s}^{2}(π-α)}$.

查看答案和解析>>

同步練習(xí)冊答案