相關(guān)習(xí)題
 0  252713  252721  252727  252731  252737  252739  252743  252749  252751  252757  252763  252767  252769  252773  252779  252781  252787  252791  252793  252797  252799  252803  252805  252807  252808  252809  252811  252812  252813  252815  252817  252821  252823  252827  252829  252833  252839  252841  252847  252851  252853  252857  252863  252869  252871  252877  252881  252883  252889  252893  252899  252907  266669 

科目: 來源: 題型:填空題

16.已知命題p:?x∈[0,3],a≥2x-2,命題q:?x∈R,x2+4x+a=0,若命題“p∧q”是真命題,則實(shí)數(shù)a的值為4.

查看答案和解析>>

科目: 來源: 題型:選擇題

15.已知雙曲線x2-$\frac{{y}^{2}}{3}$=1的一條漸近線與橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{a}^{2}-4}$=1相交與點(diǎn)P,若|OP|=2,則橢圓離心率為( 。
A.$\sqrt{3}$-1B.$\frac{1}{3}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{3}-1}{2}$

查看答案和解析>>

科目: 來源: 題型:解答題

14.已知函數(shù)f(x)=2sin2($\frac{π}{4}$+x)-$\sqrt{3}$cos2x-1,x∈R.
(1)若函數(shù)h(x)=f(x+t)的圖象關(guān)于點(diǎn)(-$\frac{π}{6}$,0)對稱,且t∈(0,$\frac{π}{2}$),求t的值;
(2)若銳角△ABC中,角A滿足h(A)=1,求($\sqrt{3}$-1)sinB+$\sqrt{2}$sinC取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

13.已知函數(shù)f(x)=(ax2+bx+c)e-x的圖象過點(diǎn)(0,2a)且在該點(diǎn)處切線的傾斜角為$\frac{π}{4}$.
(1)試用a表示b,c;
(2)若f(x)在[$\frac{1}{2}$,+∞)上不單調(diào),求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

12.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,且2$\sqrt{3}$cos2$\frac{C}{2}$=sinC+$\sqrt{3}$+1.
(1)求角C的大;
(2)若a=2$\sqrt{3}$,c=2,求b.

查看答案和解析>>

科目: 來源: 題型:填空題

11.若tanα+$\frac{1}{tanα}$=$\frac{10}{3}$,α∈($\frac{π}{4}$,$\frac{π}{2}$),則sin(2α+$\frac{π}{4}$)+2cos$\frac{π}{4}$sin2α=$\frac{4\sqrt{2}}{5}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

10.給出下列命題:①函數(shù)f(x)=4cos(2x+$\frac{π}{3}$)+1的一個(gè)對稱中心為(-$\frac{5π}{12}$,0);②函數(shù)y=f(1-x)與y=f(x-1)的圖象關(guān)于x=0對稱;③命題“?x>0,x2+2x-3>0”的否定是“?x≤0,x2+2x-3≤0”;④若α,β均為第一象限角,且α>β,則sinα>sinβ,其中正確命題的個(gè)數(shù)為( 。
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知函數(shù)f(x)=|x+a|+|x-2|
(1)當(dāng)a=-3時(shí),求不等式f(x)≥3的解集;
(2)若f(x)≤|x-4|的解集包含[0,2],求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

8.已知函數(shù)f(x)=$\frac{1}{2}{x^2}$+kx+1,g(x)=(x+1)ln(x+1)
(1)若函數(shù)g(x)的圖象在原點(diǎn)處的切線l與函數(shù)f(x)的圖象相切,求實(shí)數(shù)k的值;
(2)若對于$?t∈[{0,\sqrt{e}-1}]$,總存在x1,x2∈(-1,4),且x1≠x2滿足f(xi)=g(t)(i=1,2),其中e為自然對數(shù)的底數(shù),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

7.籃球比賽時(shí),運(yùn)動(dòng)員的進(jìn)攻成功率=投球命中率×不被對方運(yùn)動(dòng)員的攔截率.某運(yùn)動(dòng)員在距球籃10米(指到籃圈圓心在地面上射影的距離)以內(nèi)的投球命中率有如下變化:距球籃1米以內(nèi)(不含1米)為100%.距離球籃x米處,命中率下降至100%-10%[x].該運(yùn)動(dòng)員投球被攔截率為$\frac{90%}{[x]+1}({[x]為實(shí)數(shù)x的整數(shù)部分,如[{3.4}]=3})$.試求該運(yùn)動(dòng)員在比賽時(shí):(結(jié)果精確到1%)
(1)在三分線(約距球籃6.72米)處的進(jìn)攻成功率為多少?
(2)在距球籃幾米處的進(jìn)攻成功率最大,最大進(jìn)攻成功率為多少?

查看答案和解析>>

同步練習(xí)冊答案