相關(guān)習(xí)題
 0  252720  252728  252734  252738  252744  252746  252750  252756  252758  252764  252770  252774  252776  252780  252786  252788  252794  252798  252800  252804  252806  252810  252812  252814  252815  252816  252818  252819  252820  252822  252824  252828  252830  252834  252836  252840  252846  252848  252854  252858  252860  252864  252870  252876  252878  252884  252888  252890  252896  252900  252906  252914  266669 

科目: 來(lái)源: 題型:填空題

6.已知函數(shù)f(x)=x|2a-x|+2x,a∈R.
(1)若a=0,判斷函數(shù)y=f(x)的奇偶性,并加以證明;
(2)若函數(shù)f(x)在R上是增函數(shù),求實(shí)數(shù)a的取值范圍;
(3)若存在實(shí)數(shù)a∈[-2,2],使得關(guān)于x的方程f(x)-tf(2a)=0有三個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

5.給出下列四個(gè)命題:
(1)動(dòng)點(diǎn)到兩個(gè)定點(diǎn)的距離之和為定長(zhǎng),則動(dòng)點(diǎn)的軌跡為橢圓;
(2)雙曲線$\frac{{x}^{2}}{25}$-$\frac{{y}^{2}}{9}$=1與橢圓$\frac{{x}^{2}}{35}$+y2=1有相同的焦點(diǎn);
(3)點(diǎn)M與點(diǎn)F(0,-2)的距離比它到直線l:y-3=0的距離小1的軌跡方程是x2=-8y;
(4)方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的橢圓的左頂點(diǎn)為A,左、右焦點(diǎn)為F1、F2,D是它短軸的一個(gè)頂點(diǎn).若2$\overrightarrow{D{F}_{1}}$-$\overrightarrow{DA}$=$\overrightarrow{D{F}_{2}}$,則該橢圓的離心率為$\frac{1}{3}$.
其中正確命題的序號(hào)(2),(3),(4).

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

4.已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí)f(x)=3x+m(m為常數(shù)),則m=-1,f(-log35)的值為-4.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

3.若角α終邊所在的直線經(jīng)過(guò)點(diǎn)$P(cos\frac{3π}{4},sin\frac{3π}{4})$,O為坐標(biāo)原點(diǎn),則|OP|=1,$cos({\frac{π}{2}+α})$=$-\frac{{\sqrt{2}}}{2}$.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

2.?dāng)?shù)列{an}中,a1=1,an+1+an=(-2)n,Sn是數(shù)列{an}的前n項(xiàng)和,則S6=( 。
A.-62B.62C.-42D.42

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

1.求函數(shù)f(x)=x3-3x+3在區(qū)間[-2,4]上的最大值與最小值.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

20.求函數(shù)f(x)=$\frac{1}{3}$x3-4x+$\frac{1}{3}$的極值.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

19.已知函數(shù)f(x)=2x3+3ax2+3bx+8在x=1及x=2處取得極值.
(1)求a、b的值;
(2)求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

18.如圖,函數(shù)y=f(x)的圖象在點(diǎn)P(2,y)處的切線是L,則f(2)+f′(2)=( 。
A.-4B.3C.-2D.1

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

17.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{2cos\frac{πx}{3},x≤2000}\\{{2^{x-2010}},x>2000}\end{array}}$,則f(f(2015))=(  )
A.$\sqrt{3}$B.$-\sqrt{3}$C.1D.-1

查看答案和解析>>

同步練習(xí)冊(cè)答案