相關(guān)習題
 0  252849  252857  252863  252867  252873  252875  252879  252885  252887  252893  252899  252903  252905  252909  252915  252917  252923  252927  252929  252933  252935  252939  252941  252943  252944  252945  252947  252948  252949  252951  252953  252957  252959  252963  252965  252969  252975  252977  252983  252987  252989  252993  252999  253005  253007  253013  253017  253019  253025  253029  253035  253043  266669 

科目: 來源: 題型:選擇題

3.若函數(shù)f(x)=ax-b的圖象如圖所示,則(  )
A.a>1,b>1B.a>1,0<b<1C.0<a<1,b>1D.0<a<1,0<b<1

查看答案和解析>>

科目: 來源: 題型:選擇題

2.設橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1(a>b>0)$的左焦點為(-2,0),離心率為$\frac{1}{2}$,則C的標準方程為( 。
A.$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}=1$B.$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{4}=1$C.$\frac{{x}^{2}}{12}+\frac{{y}^{2}}{8}=1$D.$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{8}=1$

查看答案和解析>>

科目: 來源: 題型:填空題

1.函數(shù)f(x)=x-1-2sinπx的所有零點之和等于5.

查看答案和解析>>

科目: 來源: 題型:解答題

20.設函數(shù)h(x)=x2-mx,g(x)=lnx.
(Ⅰ)當m=-1時,若函數(shù)h(x)與g(x)在x=x0處的切線平行,求兩切線間的距離;
(Ⅱ)任意x>0,不等式h(x)≥g(x)恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

19.已知函數(shù)f(x)=4cosωx•sin(ωx+$\frac{π}{6}$)+a(ω>0)圖象與y軸的交點為(0,1),且圖象上相鄰兩條對稱軸之間的距離為$\frac{π}{2}$.
(Ⅰ)求f(x)的解析式;
(Ⅱ)若f(α)=$\frac{4}{3}$,求sin(4α-$\frac{π}{6}$)的值.

查看答案和解析>>

科目: 來源: 題型:填空題

18.已知α∈($\frac{π}{6}$,π),$\overrightarrow{a}$=(sin(2α+β),sinβ),$\overrightarrow$=(3,1),且$\overrightarrow{a}$∥$\overrightarrow$,設tanα=x,tanβ=y,記y=f(x),當f(x)=$\frac{1}{3}$時,α=$\frac{π}{4}$.

查看答案和解析>>

科目: 來源: 題型:解答題

17.如圖,在△ABC中,AO⊥BC于O,OB=2OA=2OC=4,點D,E,F(xiàn)分別為OA,OB,OC的中點,BD與AE相交于H,CD與AF相交于G,將△ABO沿OA折起,使二面角B-OA-C為直二面角.
(Ⅰ)在底面△BOC的邊BC上是否存在一點P,使得OP⊥GH,若存在,請計算BP的長度;若不存在,請說明理由;
(Ⅱ)求二面角A-GH-D的余弦值.

查看答案和解析>>

科目: 來源: 題型:解答題

16.設函數(shù)h(x)=x2-mx,g(x)=lnx.
(Ⅰ)設f(t)=m${∫}_{\frac{π}{2}}^{t}$(sinx+cosx)dx且f(2016π)=2,若函數(shù)h(x)與g(x)在x=x0處的切線平行,求這兩切線間的距離;
(Ⅱ)任意x>0,不等式h(x)≥g(x)恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

15.已知a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,$\frac{sinA}{a}$=$\frac{\sqrt{3}cosB}$.
(Ⅰ)求角B;
(Ⅱ)求sinAcosC的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

14.在平行四邊形ABCD中,AC=5,BD=4,則$\overrightarrow{AB}$•$\overrightarrow{BC}$=( 。
A.$\frac{41}{4}$B.-$\frac{41}{4}$C.$\frac{9}{4}$D.-$\frac{9}{4}$

查看答案和解析>>

同步練習冊答案