相關(guān)習(xí)題
 0  252914  252922  252928  252932  252938  252940  252944  252950  252952  252958  252964  252968  252970  252974  252980  252982  252988  252992  252994  252998  253000  253004  253006  253008  253009  253010  253012  253013  253014  253016  253018  253022  253024  253028  253030  253034  253040  253042  253048  253052  253054  253058  253064  253070  253072  253078  253082  253084  253090  253094  253100  253108  266669 

科目: 來源: 題型:填空題

12.已知直線l1與直線l2:4x-3y+1=0垂直且與圓C:x2+y2=-2y+3相切,則直線l1的方程是3x+4y+6=0或3x+4y-14=0.

查看答案和解析>>

科目: 來源: 題型:填空題

11.已知函數(shù)f(x)=2x2-4ax+2b2,若a∈{4,6,8},b∈{3,5,7},則該函數(shù)有兩個(gè)零點(diǎn)的概率為$\frac{2}{3}$.

查看答案和解析>>

科目: 來源: 題型:填空題

10.△ABC中,點(diǎn)M是邊BC的中點(diǎn),|$\overrightarrow{AB}$|=4,|$\overrightarrow{AC}$|=3,則$\overrightarrow{AM}$•$\overrightarrow{BC}$=$-\frac{7}{2}$.

查看答案和解析>>

科目: 來源: 題型:解答題

9.分別寫出經(jīng)過下列兩點(diǎn)的直線的方程:
(1)P(1,2),Q(-1,4);
(2)P(1,0),Q(0,2).

查看答案和解析>>

科目: 來源: 題型:解答題

8.求證:關(guān)于x的方程sin(cosx)=x在區(qū)間(0,$\frac{π}{2}$)內(nèi)有唯一的實(shí)數(shù)解.

查看答案和解析>>

科目: 來源: 題型:填空題

7.向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$兩兩構(gòu)成60°角,且|$\overrightarrow{a}$|=4,|$\overrightarrow$|=2,|$\overrightarrow{c}$|=6,則$\overrightarrow{p}$=$\overrightarrow{a}$+2$\overrightarrow$+3$\overrightarrow{c}$的長度為$2\sqrt{129}$.

查看答案和解析>>

科目: 來源: 題型:解答題

6.已知遞增的等比數(shù)列{an}的前n項(xiàng)和為Sn,a6=64,a4、a5的等差中項(xiàng)為3a3
(1)求{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{n}{{a}_{2n-1}}$,求數(shù)列bn的前n項(xiàng)和Tn

查看答案和解析>>

科目: 來源: 題型:解答題

5.正三棱柱ABC一A1B1C1的底面邊長為2,D為AB上一點(diǎn),如圖,建立空間直角坐標(biāo)系.
(1)若$\overrightarrow{{A}_{1}D}$是平面B1DC的法向量,即$\overrightarrow{{A}_{1}D}$⊥平面B1DC,求正三棱柱的側(cè)棱長.
(2)若D為AB的中點(diǎn),且$\overrightarrow{{A}_{1}D}$⊥$\overrightarrow{{CB}_{1}}$,求正三棱柱的側(cè)棱長.
(3)在(2)情況下,在側(cè)棱CC1上求一點(diǎn)N,使得cos($\overrightarrow{{DB}_{1}}$,$\overrightarrow{AN}$)=$\frac{3}{\sqrt{34}}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

4.y=cos($\frac{π}{3}$-2x)的增區(qū)間為( 。
A.[2kπ-π,2kπ],k∈ZB.[2kπ,2kπ+π],k∈Z
C.[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈ZD.[kπ+$\frac{π}{6}$,kπ+$\frac{2}{3}$π],k∈Z

查看答案和解析>>

科目: 來源: 題型:解答題

3.如圖,四棱錐P-ABCD中,底面ABCD為菱形,且PA=PD=DA=2,∠BAD=60°.設(shè)AD、PB、PC中點(diǎn)分別為E、F、G.
(Ⅰ)求證:PB⊥AD;
(Ⅱ)求證:EF∥平面PCD;
(Ⅲ)若PB=$\sqrt{6}$,求四面體G-BCD的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案