相關習題
 0  257175  257183  257189  257193  257199  257201  257205  257211  257213  257219  257225  257229  257231  257235  257241  257243  257249  257253  257255  257259  257261  257265  257267  257269  257270  257271  257273  257274  257275  257277  257279  257283  257285  257289  257291  257295  257301  257303  257309  257313  257315  257319  257325  257331  257333  257339  257343  257345  257351  257355  257361  257369  266669 

科目: 來源: 題型:

【題目】已知函數(shù),曲線在點處的切線與直線垂直(其中為自然對數(shù)的底數(shù)).

(I)求的解析式及單調遞減區(qū)間;

(II)是否存在常數(shù),使得對于定義域內的任意恒成立?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖所示,橢圓E的中心為坐標原點,焦點軸上,且在拋物線的準線上,點是橢圓E上的一個動點, 面積的最大值為.

(Ⅰ)求橢圓E的方程;

(Ⅱ)過焦點作兩條平行直線分別交橢圓E于四個點.

①試判斷四邊形能否是菱形,并說明理由;

②求四邊形面積的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】本題滿分12分一塊長為、寬為的長方形鐵片,鐵片的四角截去四個邊長均為的小正方形然后做成一個無蓋方盒

試把方盒的容積V表示為的函數(shù);

試求方盒容積V的最大值

查看答案和解析>>

科目: 來源: 題型:

【題目】在平面直角坐標平面中, 的兩個頂點為,平面內兩點、同時滿足:①;②;③

(1)求頂點的軌跡的方程;

(2)過點作兩條互相垂直的直線,直線與點的軌跡相交弦分別為,設弦的中點分別為

①求四邊形的面積的最小值;

②試問:直線是否恒過一個定點?若過定點,請求出該定點,若不過定點,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】某中學將100名高二文科生分成水平相同的甲、乙兩個“平行班”,每班50人.陳老師采用A,B兩種不同的教學方式分別在甲、乙兩個班進行教改實驗.為了了解教學效果,期末考試后,陳老師對甲、乙兩個班級的學生成績進行統(tǒng)計分析,畫出頻率分布直方圖(如下圖).記成績不低于90分者為“成績優(yōu)秀”.

(Ⅰ)根據頻率分布直方圖填寫下面2×2列聯(lián)表;

甲班(A方式)

乙班(B方式)

總計

成績優(yōu)秀

成績不優(yōu)秀

總計

(Ⅱ)判斷能否在犯錯誤的概率不超過0.05的前提下認為:“成績優(yōu)秀”與教學方式有關?

附:.

P(K2k)

0.25

0.15

0.10

0.05

0.025

k

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目: 來源: 題型:

【題目】已知△ABC的三個頂點分別為A(2,3),B(1,﹣2),C(﹣3,4),求
(1)BC邊上的中線AD所在的直線方程;
(2)△ABC的面積.

查看答案和解析>>

科目: 來源: 題型:

【題目】分別為雙曲線的左、右頂點,雙曲線的實軸長為,焦點到漸近線的距離為

(1)求雙曲線的方程;

(2)已知直線與雙曲線的右支交于兩點,且在雙曲線的右支上存在點,使,求的值及點的坐標.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在直三棱柱中, , , 分別是的中點。

(Ⅰ)求證: ;

(Ⅱ)求直線和平面所成角的大小.

查看答案和解析>>

科目: 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,曲線的參數(shù)方程為, 為參數(shù)),在以為極點, 軸的正半軸為極軸的極坐標系中,曲線是圓心在極軸上,且經過極點的圓.已知曲線上的點對應的參數(shù),射線與曲線交于點.

(Ⅰ)求曲線的直角坐標方程;

(Ⅱ)若點, 在曲線上,求的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知定義在區(qū)間[﹣ ,π]上的函數(shù)y=f(x)的圖象關于直線x= 對稱,當x≥ 時,函數(shù)y=sinx.
(1)求f(﹣ ),f(﹣ )的值;
(2)求y=f(x)的表達式
(3)若關于x的方程f(x)=a有解,那么將方程在a取某一確定值時所求得的所有解的和記為Ma , 求Ma的所有可能取值及相應a的取值范圍.

查看答案和解析>>

同步練習冊答案