相關習題
 0  257445  257453  257459  257463  257469  257471  257475  257481  257483  257489  257495  257499  257501  257505  257511  257513  257519  257523  257525  257529  257531  257535  257537  257539  257540  257541  257543  257544  257545  257547  257549  257553  257555  257559  257561  257565  257571  257573  257579  257583  257585  257589  257595  257601  257603  257609  257613  257615  257621  257625  257631  257639  266669 

科目: 來源: 題型:

【題目】已知f(x)=x3+3x2﹣mx+1在[﹣2,2]上為單調(diào)增函數(shù),則實數(shù)m的取值范圍為(
A.m≤﹣3
B.m≤0
C.m≥﹣24
D.m≥﹣1

查看答案和解析>>

科目: 來源: 題型:

【題目】下列說法中,正確的個數(shù)為( )
(1)
(2)已知向量 =(6,2)與 =(﹣3,k)的夾角是鈍角,則k的取值范圍是k<0
(3)若向量 能作為平面內(nèi)所有向量的一組基底
(4)若 ,則 上的投影為
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)若滿足,且在定義域內(nèi)恒成立,求實數(shù)的取值范圍;

(Ⅱ)若函數(shù)在定義域上是單調(diào)函數(shù),求實數(shù)的最小值;

(Ⅲ)當時,試比較的大。

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)當時,求函數(shù)的極小值;

(Ⅱ)設定義在上的函數(shù)在點處的切線方程為,當時,若內(nèi)恒成立,則稱為函數(shù)的“轉(zhuǎn)點”.當時,試問函數(shù)是否存在“轉(zhuǎn)點”?若存在,求出轉(zhuǎn)點的橫坐標;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】某海濱浴場每年夏季每天的海浪高度y(米)是時間x(0≤x≤24,單位:小時)的函數(shù),記作y=f(x),下表是每年夏季每天某些時刻的浪高數(shù)據(jù):

x(時)

0

3

6

9

12

15

18

21

24

y(米)

1.5

1.0

0.5

1.0

1.5

1.0

0.5

1.0

1.5


(1)經(jīng)觀察發(fā)現(xiàn)可以用三角函數(shù)y=Acosωx+b對這些數(shù)據(jù)進行擬合,求函數(shù)f(x)的表達式;
(2)浴場規(guī)定,每天白天當海浪高度高于1.25米時,才對沖浪愛好者開放,求沖浪者每天白天可以在哪個時段到該浴場進行沖浪運動?

查看答案和解析>>

科目: 來源: 題型:

【題目】用數(shù)學歸納法證明12+22+…+(n﹣1)2+n2+(n﹣1)2+…+22+12 時,由n=k的假設到證明n=k+1時,等式左邊應添加的式子是(
A.(k+1)2+2k2
B.(k+1)2+k2
C.(k+1)2
D.

查看答案和解析>>

科目: 來源: 題型:

【題目】運貨卡車以每小時x千米的速度勻速行駛120千米(50≤x≤100)(單位:千米/小時).假設汽油的價格是每升2元,而汽車每小時耗油升,司機的工資是每小時12元.

1)求這次行車總費用y關于x的表達式;

2)當x為何值時,這次行車的總費用最低,并求出最低費用的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)=alnx+ ,曲線f(x)在點(1,f(1))處的切線平行于x軸.
(1)求f(x)的最小值;
(2)比較f(x)與 的大小;
(3)證明:x>0時,xexlnx+ex>x3

查看答案和解析>>

科目: 來源: 題型:

【題目】

如圖,⊙O內(nèi)切于△ABC的邊于D,E,F(xiàn),AB=AC,連接AD交⊙O于點H,直線HF交BC的延長線于點G.

(Ⅰ)求證:圓心O在直線AD上;

(Ⅱ)求證:點C是線段GD的中點.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知點A(2sinx,﹣cosx)、B( cosx,2cosx),記f(x)=
(1)若x0是函數(shù)y=f(x)﹣1的零點,求tanx0的值;
(2)求f(x)在區(qū)間[ , ]上的最值及對應的x的值.

查看答案和解析>>

同步練習冊答案