相關(guān)習(xí)題
 0  257622  257630  257636  257640  257646  257648  257652  257658  257660  257666  257672  257676  257678  257682  257688  257690  257696  257700  257702  257706  257708  257712  257714  257716  257717  257718  257720  257721  257722  257724  257726  257730  257732  257736  257738  257742  257748  257750  257756  257760  257762  257766  257772  257778  257780  257786  257790  257792  257798  257802  257808  257816  266669 

科目: 來源: 題型:

【題目】已知集合A={x|x<﹣2或3<x≤4},B={x|x2﹣2x﹣15≤0}.求:
(1)A∩B;
(2)若C={x|x≥a},且B∩C=B,求a的范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】為了解人們對于國家新頒布的“生育二胎放開”政策的熱度,現(xiàn)在某市進行調(diào)查,隨機抽調(diào)了50人,他們年齡的頻數(shù)分布及支持“生育二胎”人數(shù)如下表:

年齡

[5,15)

[15,25)

[25,35)

[35,45)

[45,55)

[55,65)

頻數(shù)

5

10

15

10

5

5

支持“生育二胎”

4

5

12

8

2

1


(1)由以上統(tǒng)計數(shù)據(jù)填下面2×2列聯(lián)表;

年齡不低于45歲的人

年齡低于45歲的人

合計

支持“生育二胎”

a=

c=

不支持“生育二胎”

b=

d=

合計


(2)判斷是否有99%的把握認(rèn)為以45歲為分界點對“生育二胎放開”政策的支持度有差異.

P(K2≥k)

0.050

0.010

0.001

k

3.841

6.635

10.828

附表:K2=

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,矩形ABCD所在的平面和平面互相垂直,等腰梯形中, , , , 分別為的中點, 為底面的重心.

(Ⅰ)求證: ∥平面

(Ⅱ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】定義在[﹣2,2]上的偶函數(shù)g(x),當(dāng)x≥0時,g(x)單調(diào)遞減,若g(1﹣m)﹣g(m)<0,則實數(shù)m的取值范圍是

查看答案和解析>>

科目: 來源: 題型:

【題目】隨著我國經(jīng)濟的迅速發(fā)展,居民的儲蓄存款逐年增長.設(shè)某地區(qū)城鄉(xiāng)居民人民幣儲蓄存款(年底余額)如表:

年份

2010

2011

2012

2013

2014

時間代號x

1

2

3

4

5

儲蓄存款y (千億元)

5

6

7

8

10

附:回歸方程 中, =
(1)求y關(guān)于x的線性回歸方程 ;
(2)用所求回歸方程預(yù)測該地區(qū)今年的人民幣儲蓄存款.

查看答案和解析>>

科目: 來源: 題型:

【題目】平面直角坐標(biāo)系xOy中,曲線C:(x﹣1)2+y2=1.直線l經(jīng)過點P(m,0),且傾斜角為 .以O(shè)為極點,以x軸正半軸為極軸,建立坐標(biāo)系.
(1)寫出曲線C的極坐標(biāo)方程與直線l的參數(shù)方程;
(2)若直線l與曲線C相交于A,B兩點,且|PA||PB|=1,求實數(shù)m的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知a>0,求證: ≥a+ ﹣2.

查看答案和解析>>

科目: 來源: 題型:

【題目】設(shè)二次函數(shù)f(x)=ax2+bx+c(a≠0)在區(qū)間[﹣2,2]上的最大值、最小值分別是M,m,集合A={x|f(x)=x}.
(1)若A={1,2},且f(0)=2,求M和m的值;
(2)若A={1},且a≥1,記g(a)=M+m,求g(a)的最小值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù) ,其中b是常數(shù).
(1)若y=f(x)是奇函數(shù),求b的值;
(2)求證:y=f(x)是單調(diào)增函數(shù).

查看答案和解析>>

科目: 來源: 題型:

【題目】已知定義域為R的函數(shù)f(x)= 是奇函數(shù),
(1)求a的值;
(2)試判斷f(x)在(﹣∞,+∞)的單調(diào)性,并請你用函數(shù)單調(diào)性的定義給予證明;
(3)若對任意的t∈R,不等式f(mt2+1)+f(1﹣mt)<0恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案