相關習題
 0  258768  258776  258782  258786  258792  258794  258798  258804  258806  258812  258818  258822  258824  258828  258834  258836  258842  258846  258848  258852  258854  258858  258860  258862  258863  258864  258866  258867  258868  258870  258872  258876  258878  258882  258884  258888  258894  258896  258902  258906  258908  258912  258918  258924  258926  258932  258936  258938  258944  258948  258954  258962  266669 

科目: 來源: 題型:

【題目】如圖,已知圓M過點P(10,4),且與直線4x+3y-20=0相切于點A(2,4)

(1)求圓M的標準方程;

(2)設平行于OA的直線l與圓M相交于B、C兩點,且,求直線l的方程;

查看答案和解析>>

科目: 來源: 題型:

【題目】已知集合A={x|(x﹣3)(x﹣3a﹣5)<0},函數(shù)y=lg(﹣x2+5x+14)的定義域為集合B.
(1)若a=4,求集合A∩B;
(2)若“x∈A”是“x∈B”的充分條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知f(x)=ax+ ,g(x)=ex﹣3ax,a>0,若對x1∈(0,1),存在x2∈(1,+∞),使得方程f(x1)=g(x2)總有解,則實數(shù)a的取值范圍為

查看答案和解析>>

科目: 來源: 題型:

【題目】設f(x)是定義在R上的奇函數(shù),且滿足x>0時,f(x)+xf'(x)>0,f(2)=0,則不等式f(x)>0的解集為

查看答案和解析>>

科目: 來源: 題型:

【題目】在平面直角坐標系xOy中,已知動圓S過定點P(﹣2 ),且與定圓Q:(x﹣2 2+y2=36相切,記動圓圓心S的軌跡為曲線C.
(1)求曲線C的方程;
(2)設曲線C與x軸,y軸的正半軸分別相交于A,B兩點,點M,N為橢圓C上相異的兩點,其中點M在第一象限,且直線AM與直線BN的斜率互為相反數(shù),試判斷直線MN的斜率是否為定值.如果是定值,求出這個值;如果不是定值,說明理由;
(3)在(2)條件下,求四邊形AMBN面積的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】在平面直角坐標系xOy中,已知橢圓C: (m>0)的離心率為 ,A,B分別為橢圓的左、右頂點,F(xiàn)是其右焦點,P是橢圓C上異于A、B的動點.

(1)求m的值及橢圓的準線方程;
(2)設過點B且與x軸的垂直的直線交AP于點D,當直線AP繞點A轉動時,試判斷以BD為直徑的圓與直線PF的位置關系,并加以證明.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知直線l與圓C:x2+y2+2x﹣4y+a=0相交于A,B兩點,弦AB的中點為M(0,1).
(1)若圓C的半徑為 ,求實數(shù)a的值;
(2)若弦AB的長為6,求實數(shù)a的值;
(3)當a=1時,圓O:x2+y2=2與圓C交于M,N兩點,求弦MN的長.

查看答案和解析>>

科目: 來源: 題型:

【題目】相傳古代印度國王在獎賞他聰明能干的宰相達依爾(國際象棋發(fā)明者),問他需要什么,達依爾說:“國王只要在國際象棋棋盤的第一格子上放一粒麥子,第二格子上放二粒,第三格子上放四粒,以后按比例每一格加一倍,一直放到第64(國際象棋棋盤格數(shù)是8×8=64),我就感恩不盡,其他什么也不要了.國王想:“這才有多少,還不容易!”于是讓人扛來一袋小麥,但不到一會兒就用完了,再來一袋很快又沒有了,結果全印度的糧食用完還不夠,國王很奇怪,怎么也算不清這筆賬.請你設計一個程序框圖表示其算法,來幫國王計算一下需要多少粒小麥.

查看答案和解析>>

科目: 來源: 題型:

【題目】閱讀下邊的程序框圖,若輸入的n100,則輸出的變量ST的值依次是_____.

查看答案和解析>>

科目: 來源: 題型:

【題目】在平面直角坐標系xoy中,已知中心在原點,焦點在x軸上的雙曲線C的離心率為 ,且雙曲線C與斜率為2的直線l相交,且其中一個交點為P(﹣3,0).
(1)求雙曲線C的方程及它的漸近線方程;
(2)求以直線l與坐標軸的交點為焦點的拋物線的標準方程.

查看答案和解析>>

同步練習冊答案