相關(guān)習(xí)題
 0  259282  259290  259296  259300  259306  259308  259312  259318  259320  259326  259332  259336  259338  259342  259348  259350  259356  259360  259362  259366  259368  259372  259374  259376  259377  259378  259380  259381  259382  259384  259386  259390  259392  259396  259398  259402  259408  259410  259416  259420  259422  259426  259432  259438  259440  259446  259450  259452  259458  259462  259468  259476  266669 

科目: 來源: 題型:

【題目】在三棱錐ABCD中,BC⊥CD,Rt△BCD斜邊上的高為1,三棱錐ABCD的外接球的直徑是AB,若該外接球的表面積為16π,則三棱錐ABCD體積的最大值為(
A.
B.
C.1
D.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知的一個(gè)頂點(diǎn)為拋物線的頂點(diǎn), 兩點(diǎn)都在拋物線上,且.

(1)求證:直線必過一定點(diǎn);

(2)求證: 面積的最小值.

查看答案和解析>>

科目: 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,橢圓C: =1a>b>0過點(diǎn)P(1, ).離心率為

(1)求橢圓C的方程;

(2)設(shè)直線l與橢圓C交于A,B兩點(diǎn).

①若直線l過橢圓C的右焦點(diǎn),記△ABP三條邊所在直線的斜率的乘積為t.

t的最大值;

②若直線l的斜率為,試探究OA2+ OB2是否為定值,若是定值,則求出此

定值;若不是定值,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖:設(shè)一正方形紙片ABCD邊長為2分米,切去陰影部分所示的四個(gè)全等的等腰三角形,剩余為一個(gè)正方形和四個(gè)全等的等腰三角形,沿虛線折起,恰好能做成一個(gè)正四棱錐(粘接損耗不計(jì)),圖中,O為正四棱錐底面中心

若正四棱錐的棱長都相等,求這個(gè)正四棱錐的體積V;

設(shè)等腰三角形APQ的底角為x,試把正四棱錐的側(cè)面積S表示為x的函數(shù),并求S的范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】秦九韶是我國南宋時(shí)代的數(shù)學(xué)家,其代表作《數(shù)書九章》是我國13世紀(jì)數(shù)學(xué)成就的代表之一,秦九韶利用其多項(xiàng)式算法,給出了求高次代數(shù)方程的完整算法,這一成就比西方同樣的算法早五六百年,如圖是該算法求函數(shù)f(x)=x3+x+1零點(diǎn)的程序框圖,若輸入x=﹣1,c=1,d=0.1,則輸出的x的值為( )

A.﹣0.6
B.﹣0.69
C.﹣0.7
D.﹣0.71

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)=x-1x2-2,試?yán)没境醯群瘮?shù)的圖象,判斷f(x)有幾個(gè)零點(diǎn),并利用零點(diǎn)存在性定理確定各零點(diǎn)所在的區(qū)間(各區(qū)間長度不超過1).

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,點(diǎn)是橢圓的短軸位于軸下方的端點(diǎn),過作斜率為1的直線交橢圓于點(diǎn),點(diǎn)軸上,且軸,

1)若點(diǎn)的坐標(biāo)為,求橢圓的方程;

2)若點(diǎn)的坐標(biāo)為,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)=sin2x+sinx+cosx,以下說法中不正確的是(
A.f(x)周期為2π
B.f(x)最小值為﹣
C.f(x)在區(qū)間[0, ]單調(diào)遞增
D.f(x)關(guān)于點(diǎn)x= 對稱

查看答案和解析>>

科目: 來源: 題型:

【題目】已知圓M的圓心在直線上,且經(jīng)過點(diǎn)A-3,0),B1,2).

(1)求圓M的方程;

2)直線與圓M相切,且y軸上的截距是x軸上截距的兩倍,求直線的方程.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,四棱錐P—ABCD中,ABCD為矩形,△PAD為等腰直角三角形,

∠APD=90°,面PAD⊥面ABCD,且AB=1,AD=2,E、F分別為PCBD的中點(diǎn).

(1)證明:EF∥面PAD;

(2)證明:面PDC⊥面PAD;

(3)求四棱錐P—ABCD的體積.

查看答案和解析>>

同步練習(xí)冊答案