相關(guān)習(xí)題
 0  259532  259540  259546  259550  259556  259558  259562  259568  259570  259576  259582  259586  259588  259592  259598  259600  259606  259610  259612  259616  259618  259622  259624  259626  259627  259628  259630  259631  259632  259634  259636  259640  259642  259646  259648  259652  259658  259660  259666  259670  259672  259676  259682  259688  259690  259696  259700  259702  259708  259712  259718  259726  266669 

科目: 來源: 題型:

【題目】某中學(xué)在“三關(guān)心”(即關(guān)心家庭、關(guān)心學(xué)校、關(guān)心社會)的專題中,對個稅起征點(diǎn)問題進(jìn)行了學(xué)習(xí)調(diào)查.學(xué)校決定從高一年級800人,高二年級1000人,高三年級800人中按分層抽樣的方法共抽取13人進(jìn)行談話,其中認(rèn)為個稅起征點(diǎn)為3000元的有3人,認(rèn)為個稅起征點(diǎn)為4000元的有6人,認(rèn)為個稅起征點(diǎn)為 5000元的有4人.

(1)求高一年級、高二年級、高三年級分別抽取多少人?

(2)從13人中選出3人,求至少有1人認(rèn)為個稅起征點(diǎn)為4000元的概率;

(3)記從13人中選出3人中認(rèn)為個稅起征點(diǎn)為4000元的人數(shù)為,求的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目: 來源: 題型:

【題目】某生產(chǎn)企業(yè)研發(fā)了一種新產(chǎn)品,該產(chǎn)品在試銷一個階段后得到銷售單價(單位:元)和銷售量(單位:萬件)之間的一組數(shù)據(jù),如下表所示:

銷售單價/元

9

9.5

10

10.5

11

銷售量/萬件

11

10

8

6

5

(1)根據(jù)表中數(shù)據(jù),建立關(guān)于的回歸方程;

(2)從反饋的信息來看,消費(fèi)者對該產(chǎn)品的心理價(單位:元/件)在內(nèi),已知該產(chǎn)品的成本是元/件(其中),那么在消費(fèi)者對該產(chǎn)品的心理價的范圍內(nèi),銷售單價定為多少時,企業(yè)才能獲得最大利潤?(注:利潤=銷售收入-成本)

參考數(shù)據(jù):,.

參考公式:,.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知雙曲線C: (a>0,b>0)的左、右焦點(diǎn)分別為F1 , F2 , 點(diǎn)M與雙曲線C的焦點(diǎn)不重合,點(diǎn)M關(guān)于F1 , F2的對稱點(diǎn)分別為A,B,線段MN的中點(diǎn)在雙曲線的右支上,若|AN|﹣|BN|=12,則a=(
A.3
B.4
C.5
D.6

查看答案和解析>>

科目: 來源: 題型:

【題目】將函數(shù)f(x)=2sin(ωx+ )(ω>0)的圖象向右平移 個單位,得到函數(shù)y=g(x)的圖象,若y=g(x)在[﹣ ]上為增函數(shù),則ω的最大值為(
A.3
B.2
C.
D.

查看答案和解析>>

科目: 來源: 題型:

【題目】某大學(xué)開設(shè)甲、乙、丙三門選修課,學(xué)生是否選修哪門課互不影響,已知某學(xué)生只選修甲的概率為0.08,只選修甲和乙的概率是0.12,至少選修一門的概率是0.88,用表示該學(xué)生選修的課程門數(shù)和沒有選修的課程門數(shù)的乘積.

1)記函數(shù)上的偶函數(shù)為事件,求事件的概率;

2)求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目: 來源: 題型:

【題目】某校為了分析本校高中生的性別與是否喜歡數(shù)學(xué)之間的關(guān)系,在高中生中隨機(jī)地抽取了90名學(xué)生調(diào)查,得到了如下列聯(lián)表:

喜歡數(shù)學(xué)

不喜歡數(shù)學(xué)

總計

30

45

25

45

總計

90

(1)求①②③④處分別對應(yīng)的值;

(2)能有多大把握認(rèn)為“高中生的性別與喜歡數(shù)學(xué)”有關(guān)?

附:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

.

查看答案和解析>>

科目: 來源: 題型:

【題目】在△中,已知,直線經(jīng)過點(diǎn)

(Ⅰ)若直線:與線段交于點(diǎn),且為△的外心,求△的外接圓的方程;

(Ⅱ)若直線方程為,且△的面積為,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在四棱錐PABCD中,PA⊥底面ABCD,ABAD,ACCD,∠ABC=60°,PAABBC,EPC的中點(diǎn).

(1)證明:AE⊥平面PCD

(2)求二面角APDC的正弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)=|x﹣1|+|x﹣a|.
(1)若a=﹣1,解不等式f(x)≥3;
(2)如果x∈R,使得f(x)<2成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】在獨(dú)立性檢驗中,統(tǒng)計量有三個臨界值:2.706,3.841和6.635.當(dāng)時,有90%的把握說明兩個事件有關(guān);當(dāng)時,有95%的把握說明兩個事件有關(guān),當(dāng)時,有99%的把握說明兩個事件有關(guān),當(dāng)時,認(rèn)為兩個事件無關(guān).在一項打鼾與心臟病的調(diào)查中,共調(diào)查了2000人,經(jīng)計算.根據(jù)這一數(shù)據(jù)分析,認(rèn)為打鼾與患心臟病之間( )

A. 有95%的把握認(rèn)為兩者有關(guān) B. 約95%的打鼾者患心臟病

C. 有99%的把握認(rèn)為兩者有關(guān) D. 約99%的打鼾者患心臟病

查看答案和解析>>

同步練習(xí)冊答案