相關(guān)習(xí)題
 0  259675  259683  259689  259693  259699  259701  259705  259711  259713  259719  259725  259729  259731  259735  259741  259743  259749  259753  259755  259759  259761  259765  259767  259769  259770  259771  259773  259774  259775  259777  259779  259783  259785  259789  259791  259795  259801  259803  259809  259813  259815  259819  259825  259831  259833  259839  259843  259845  259851  259855  259861  259869  266669 

科目: 來源: 題型:

【題目】已知

(1)求函數(shù)的最小正周期和對稱軸方程;

(2)若,求的值域.

【答案】(1)對稱軸為,最小正周期;(2)

【解析】

(1)利用正余弦的二倍角公式和輔助角公式將函數(shù)解析式進行化簡得到,由周期公式和對稱軸公式可得答案;(2)由x的范圍得到,由正弦函數(shù)的性質(zhì)即可得到值域.

(1)

,則

的對稱軸為,最小正周期;

(2)當(dāng)時,

因為單調(diào)遞增,在單調(diào)遞減,

取最大值,在取最小值,

所以

所以

【點睛】

本題考查正弦函數(shù)圖像的性質(zhì),考查周期性,對稱性,函數(shù)值域的求法,考查二倍角公式以及輔助角公式的應(yīng)用,屬于基礎(chǔ)題.

型】解答
結(jié)束】
21

【題目】已知等比數(shù)列的前項和為,公比,,

(1)求等比數(shù)列的通項公式;

(2)設(shè),求的前項和

查看答案和解析>>

科目: 來源: 題型:

【題目】已知等比數(shù)列{an}滿足an+1+an=92n﹣1 , n∈N* . (Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=nan , 數(shù)列{bn}的前n項和為Sn , 若不等式Sn>kan﹣1對一切n∈N*恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)

(1)當(dāng)a=1時,求函數(shù)f(x)的單調(diào)區(qū)間;

(2)若恒成立,求b-a的最小值.

查看答案和解析>>

科目: 來源: 題型:

【題目】在△ABC中,角A,B,C所對應(yīng)的邊分別為a,b,c,且(2a﹣c)cosB=bcosC. (Ⅰ)求角B的大小;
(Ⅱ)若a=2,c=3,求sinC的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】若定義域為R的偶函數(shù)y=f(x)滿足f(x+2)=﹣f(x),且當(dāng)x∈[0,2]時,f(x)=2﹣x2 , 則方程f(x)=sin|x|在[﹣3π,3π]內(nèi)根的個數(shù)是

查看答案和解析>>

科目: 來源: 題型:

【題目】已知動點M(x,y)滿足,點M的軌跡為曲線E.

(1)求E的標(biāo)準(zhǔn)方程;

(2)過點F(1,0)作直線交曲線E于P,Q兩點,交軸于R點,若,證明:為定值.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在以為頂點的多面體中, 平面平面,

1)請在圖中作出平面,使得,且,并說明理由;

2)求直線和平面所成角的正弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知點P是橢圓 在第一象限上的動點,過點P引圓x2+y2=4的兩條切線PA、PB,切點分別是A、B,直線AB與x軸、y軸分別交于點M、N,則△OMN面積的最小值為

查看答案和解析>>

科目: 來源: 題型:

【題目】甲、乙兩個籃球運動員互不影響地在同一位置投球,命中率分別為,且乙投球3次均未命中的概率為,甲投球未命中的概率恰是乙投球未命中的概率的2倍. 

(Ⅰ)求乙投球的命中率;

(Ⅱ)若甲投球1次,乙投球2次,兩人共命中的次數(shù)記為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)的導(dǎo)函數(shù),其中.

(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;

(2)若方程有三個互不相同的根0,,,其中.

①是否存在實數(shù),使得成立?若存在,求出的值;若不存在,說明理由.

②若對任意的,不等式恒成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案