科目: 來源: 題型:
【題目】已知數列是遞增數列,且對,都有,則實數的取值范圍是
A. B. C. D.
【答案】D
【解析】
由{an}是遞增數列,得到an+1>an,再由“an=n2+λn恒成立”轉化為“λ>﹣2n﹣1對于n∈N*恒成立”求解.
∵{an}是遞增數列,
∴an+1>an,
∵an=n2+λn恒成立
即(n+1)2+λ(n+1)>n2+λn,
∴λ>﹣2n﹣1對于n∈N*恒成立.
而﹣2n﹣1在n=1時取得最大值﹣3,
∴λ>﹣3,
故選:D.
【點睛】
本題主要考查由數列的單調性來構造不等式,解決恒成立問題.研究數列單調性的方法有:比較相鄰兩項間的關系,將an+1和an做差與0比較,即可得到數列的單調性;研究數列通項即數列表達式的單調性.
【題型】單選題
【結束】
13
【題目】已知數列{an}滿足a1=1,且an=an-1+2n1 (n≥2 ),則a20=________.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知等比數列{an}的各項均為不等于1的正數,數列{bn}滿足bn=lgan,b3=18,b6=12,則數列{bn}的前n項和的最大值等于( )
A. 126 B. 130 C. 132 D. 134
【答案】C
【解析】
由題意可知,lga3=b3,lga6=b6再由b3,b6,用a1和q表示出a3和b6,進而求得q和a1,根據{an}為正項等比數列推知{bn}為等差數列,進而得出數列bn的通項公式和前n項和,可知Sn的表達式為一元二次函數,根據其單調性進而求得Sn的最大值.
由題意可知,lga3=b3,lga6=b6.
又∵b3=18,b6=12,則a1q2=1018,a1q5=1012,
∴q3=10﹣6.
即q=10﹣2,∴a1=1022.
又∵{an}為正項等比數列,
∴{bn}為等差數列,
且d=﹣2,b1=22.
故bn=22+(n﹣1)×(﹣2)=﹣2n+24.
∴Sn=22n+×(﹣2)
=﹣n2+23n=,又∵n∈N*,故n=11或12時,(Sn)max=132.
故答案為:C.
【點睛】
這個題目考查的是等比數列的性質和應用;解決等差等比數列的小題時,常見的思路是可以化基本量,解方程;利用等差等比數列的性質解決題目;還有就是如果題目中涉及到的項較多時,可以觀察項和項之間的腳碼間的關系,也可以通過這個發(fā)現規(guī)律。
【題型】單選題
【結束】
12
【題目】已知數列是遞增數列,且對,都有,則實數的取值范圍是
A. B. C. D.
查看答案和解析>>
科目: 來源: 題型:
【題目】某公司生產的某批產品的銷售量P萬件(生產量與銷售量相等)與促銷費用x萬元滿足P= (其中0≤x≤a,a為正常數).已知生產該產品還需投入成本6(P+ )萬元(不含促銷費用),產品的銷售價格定為(4+ )元/件.
(1)將該產品的利潤y萬元表示為促銷費用x萬元的函數;
(2)促銷費用投入多少萬元時,該公司的利潤最大?
查看答案和解析>>
科目: 來源: 題型:
【題目】設等差數列{an}的前n項和為Sn,若Sm-1=-2,Sm=0,Sm+1=3,則m=( )
A. 5 B. 4 C. 3 D. 6
【答案】A
【解析】
根據數列前n項和的定義得到的值,再由數列的前n項和的公式得到,進而求得首項,由=2,解得m值.
Sm-1=-2,Sm=0,故得到 Sm=0,Sm+1=3,則,
根據等差數列的前n項和公式得到Sm=,得到首項為-2,故=2,解得m=5.
故答案為:A.
【點睛】
這個題目考查的是數列通項公式的求法及數列求和的常用方法;數列通項的求法中有常見的已知和的關系,求表達式,一般是寫出做差得通項,但是這種方法需要檢驗n=1時通項公式是否適用;數列求和常用法有:錯位相減,裂項求和,分組求和等。
【題型】單選題
【結束】
11
【題目】已知等比數列{an}的各項均為不等于1的正數,數列{bn}滿足bn=lgan,b3=18,b6=12,則數列{bn}的前n項和的最大值等于( )
A. 126 B. 130 C. 132 D. 134
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數f(x)=2sin(x+ )cosx.
(1)若0≤x≤ ,求函數f(x)的值域;
(2)設△ABC的三個內角A,B,C所對的邊分別為a,b,c,若A為銳角且f(A)= ,b=2,c=3,求cos(A﹣B)的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】在如圖所示的銳角三角形空地中, 欲建一個面積不小于300m2的內接矩形花園(陰影部分), 則其邊長x(單位m)的取值范圍是 ( )
(A) [15,20](B) [12,25] (C) [10,30](D) [20,30]
【答案】C
【解析】如圖△ADE∽△ABC,設矩形的另一邊長為y,則,所以,又,所以,即,解得.
【考點定位】本題考查平面幾何知識和一元二次不等式的解法,對考生的閱讀理解能力、分析問題和解決問題的能力以及探究創(chuàng)新能力都有一定的要求.屬于難題.
【題型】單選題
【結束】
10
【題目】設等差數列{an}的前n項和為Sn,若Sm-1=-2,Sm=0,Sm+1=3,則m=( )
A. 5 B. 4 C. 3 D. 6
查看答案和解析>>
科目: 來源: 題型:
【題目】已知點列An(an , bn)(n∈N*)均為函數y=ax(a>0,a≠1)的圖象上,點列Bn(n,0)滿足|AnBn|=|AnBn+1|,若數列{bn}中任意連續(xù)三項能構成三角形的三邊,則a的取值范圍為( )
A.(0, )∪( ,+∞)
B.( ,1)∪(1, )
C.(0, )∪( ,+∞)
D.( ,1)∪(1, )
查看答案和解析>>
科目: 來源: 題型:
【題目】在數列{ }中,已知,,,則等于( )
A. B. C. D.
【答案】B
【解析】
將數列的等式關系兩邊取倒數是公差為的等差數列,再根據等差數列求和公式得到數列通項,再取倒數即可得到數列{}的通項.
將等式兩邊取倒數得到,是公差為的等差數列,=,根據等差數列的通項公式的求法得到,故=.
故答案為:B.
【點睛】
這個題目考查的是數列通項公式的求法,數列通項的求法中有常見的已知和的關系,求表達式,一般是寫出做差得通項,但是這種方法需要檢驗n=1時通項公式是否適用;還有構造新數列的方法,取倒數,取對數的方法等等.
【題型】單選題
【結束】
9
【題目】在如圖所示的銳角三角形空地中, 欲建一個面積不小于300m2的內接矩形花園(陰影部分), 則其邊長x(單位m)的取值范圍是 ( )
(A) [15,20](B) [12,25] (C) [10,30](D) [20,30]
查看答案和解析>>
科目: 來源: 題型:
【題目】已知{an}為等比數列,a4+a7=2,a5a6=-8,則a1+a10=( )
A. 7 B. 5
C. -5 D. -7
【答案】D
【解析】由解得或
∴或,∴a1+a10=a1(1+q9)=-7.選D.
點睛:在解決等差、等比數列的運算問題時,有兩個處理思路,一是利用基本量,將多元問題簡化為一元問題,雖有一定量的運算,但思路簡潔,目標明確;二是利用等差、等比數列的性質,性質是兩種數列基本規(guī)律的深刻體現,是解決等差、等比數列問題既快捷又方便的工具,應有意識地去應用.但在應用性質時要注意性質的前提條件,有時需要進行適當變形. 在解決等差、等比數列的運算問題時,經常采用“巧用性質、整體考慮、減少運算量”的方法.
【題型】單選題
【結束】
8
【題目】在數列{ }中,已知,,,則等于( )
A. B. C. D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com