科目: 來源: 題型:
【題目】已知定義域為A的函數(shù)f(x),若對任意的x1,x2∈A,都有f(x1+x2)-f(x1)≤f(x2),則稱函數(shù)f(x)為“定義域上的M函數(shù)”,給出以下五個函數(shù):
①f(x)=2x+3,x∈R;②f(x)=x2,x∈;③f(x)=x2+1,x∈;④f(x)=sin x,x∈;⑤f(x)=log2x,x∈[2,+∞).
其中是“定義域上的M函數(shù)”的有( )
A. 2個 B. 3個
C. 4個 D. 5個
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖是一幾何體的平面展開圖,其中ABCD為正方形,E,F分別為PA,PD的中點,
在此幾何體中,給出下面四個結(jié)論:
①直線BE與直線CF異面; ②直線BE與直線AF異面;
③直線EF∥平面PBC; ④平面BCE⊥平面PAD.
其中正確的有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目: 來源: 題型:
【題目】已知雙曲線的焦點是橢圓的頂點, 為橢圓的左焦點且橢圓經(jīng)過點.
(1)求橢圓的方程;
(2)過橢圓的右頂點作斜率為的直線交橢圓于另一點,連結(jié)并延長交橢圓于點,當的面積取得最大值時,求的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】共享單車是指企業(yè)的校園,地鐵站點、公交站點、居民區(qū)、商業(yè)區(qū)、公共服務(wù)區(qū)等提供自行車單車共享服務(wù),是一種分時租賃模式,某共享單車企業(yè)為更好服務(wù)社會,隨機調(diào)查了100人,統(tǒng)計了這100人每日平均騎行共享單車的時間(單位:分鐘),由統(tǒng)計數(shù)據(jù)得到如下頻率分布直方圖,已知騎行時間在三組對應(yīng)的人數(shù)依次成等差數(shù)列
(1)求頻率分布直方圖中的值.
(2)若將日平均騎行時間不少于80分鐘的用戶定義為“忠實用戶”,將日平均騎行時間少于40分鐘的用戶為“潛力用戶”,現(xiàn)從上述“忠實用戶”與“潛力用戶”的人中按分層抽樣選出5人,再從這5人中任取3人,求恰好1人為“忠實用戶”的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】函數(shù)f(x)=(m2-m-1)·是冪函數(shù),對任意x1,x2∈(0,+∞)且x1≠x2,滿足,若a,b∈R且a+b>0,ab<0,則f(a)+f(b)的值( )
A. 恒大于0 B. 恒小于0
C. 等于0 D. 無法判斷
查看答案和解析>>
科目: 來源: 題型:
【題目】給出下列函數(shù):①f(x)=()x;②f(x)=x2;③f(x)=x3;④f(x)=;⑤f(x)=log2x.其中滿足條件f()>(0<x1<x2)的函數(shù)的個數(shù)是( )
A. 1 B. 2
C. 3 D. 4
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓C:,其中(e為橢圓離心率),焦距為2,過點M(4,0)的直線l與橢圓C交于點A,B,點B在AM之間.又點A,B的中點橫坐標為.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)求直線l的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知點為拋物線C:的焦點,過點的動直線與拋物線C交于,兩點,如圖.當直線與軸垂直時,.
(1)求拋物線C的方程;
(2)已知點,設(shè)直線PM的斜率為,直線PN的斜率為.請判斷是否為定值,若是,寫出這個定值,并證明你的結(jié)論;若不是,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】【2018屆吉林省普通中學高三第二次調(diào)研】設(shè)橢圓的左焦點為,右頂點為,離心率為,短軸長為,已知是拋物線的焦點.
(1)求橢圓的方程和拋物線的方程;
(2)若拋物線的準線上兩點關(guān)于軸對稱,直線與橢圓相交于點(異于點),直線與軸相交于點,若的面積為,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com