科目: 來源: 題型:
【題目】已知橢圓E: (a﹥b﹥0)的一個焦點與短軸的兩個端點是正三角形的三個頂點,點在橢圓E上.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設不過原點O且斜率為的直線l與橢圓E交于不同的兩點A,B,線段AB的中點為M,直線OM與橢圓E交于C,D,證明:|MA|·|MB|=|MC|·|MD|.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,為保護河上古橋OA,規(guī)劃建一座新橋BC,同時設立一個圓形保護區(qū).規(guī)劃要求:新橋BC與河岸AB垂直;保護區(qū)的邊界為圓心M在線段OA上并與BC相切的圓,且古橋兩端O和A到該圓上任意一點的距離均不少于80 m.經(jīng)測量,點A位于點O正北方向60 m處,點C位于點O正東方向170 m處(OC為河岸),tan∠BCO=.
(1)求新橋BC的長;
(2)當OM多長時,圓形保護區(qū)的面積最大?
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標系xOy中,直線l:y=t(t≠0)交y軸于點M,交拋物線C:y2=2px(p>0)于點P,M關于點P的對稱點為N,連結(jié)ON并延長交C于點H.
(1)求;
(2)除H以外,直線MH與C是否有其它公共點?說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標系xOy中,曲線C1: (t為參數(shù),t≠0),其中0≤α<π.在以O為極點,x軸正半軸為極軸的極坐標系中,曲線C2:ρ=2sin θ,C3:ρ=2cos θ.
(1)求C2與C3交點的直角坐標;
(2)若C1與C2相交于點A,C1與C3相交于點B,求|AB|的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知圓C:x2+(y-a)2=4,點A(1,0).
(1)當過點A的圓C的切線存在時,求實數(shù)a的取值范圍;
(2)設AM、AN為圓C的兩條切線,M、N為切點,當MN=時,求MN所在直線的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,射線OA、OB分別與x軸正半軸成45°和30°角,過點P(1,0)作直線AB分別交OA、OB于A、B兩點,當AB的中點C恰好落在直線y=x上時,求直線AB的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)的導函數(shù)f′(x),且對任意x>0,都有f′(x)>.
(1)判斷函數(shù)F(x)=在(0,+∞)上的單調(diào)性;
(2)設x1,x2∈(0,+∞),證明:f(x1)+f(x2)<f(x1+x2);
(3)請將(2)中結(jié)論推廣到一般形式,并證明你所推廣的結(jié)論.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,已知兩個正方形ABCD和DCEF不在同一平面內(nèi),M,N分別為AB,DF的中點.
(1)若平面ABCD⊥平面DCEF,求直線MN與平面DCEF所成角的正弦值;
(2)用反證法證明:直線ME與BN是兩條異面直線.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了凈化空氣,某科研單位根據(jù)實驗得出,在一定范圍內(nèi),每噴灑1個單位的凈化劑,空氣中釋放的濃度y(單位:毫克/立方米)隨著時間x(單位:天)變化的函數(shù)關系式近似為y= 若多次噴灑,則某一時刻空氣中的凈化劑濃度為每次投放的凈化劑在相應時刻所釋放的濃度之和.由實驗知,當空氣中凈化劑的濃度不低于4(毫克/立方米)時,它才能起到凈化空氣的作用.
(1)若一次噴灑4個單位的凈化劑,則凈化時間可達幾天?
(2)若第一次噴灑2個單位的凈化劑,6天后再噴灑a(1≤a≤4)個單位的藥劑,要使接下來的4天中能夠持續(xù)有效凈化,試求a的最小值(精確到0.1,參考數(shù)據(jù): 取1.4).
查看答案和解析>>
科目: 來源: 題型:
【題目】已知正項等比數(shù)列{an}(n∈N*),首項a1=3,前n項和為Sn,且S3+a3、S5+a5,S4+a4成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)數(shù)列{nan}的前n項和為Tn,若對任意正整數(shù)n,都有Tn∈[a,b],求b-a的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com