科目: 來源: 題型:
【題目】如圖①,有一個長方體形狀的敞口玻璃容器,底面是邊長為20cm的正方形,高為30cm,內有20cm深的溶液.現將此容器傾斜一定角度(圖②),且傾斜時底面的一條棱始終在桌面上(圖①、②均為容器的縱截面).
(1)要使傾斜后容器內的溶液不會溢出,角的最大值是多少?
(2)現需要倒出不少于的溶液,當時,能實現要求嗎?請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標平面內,以坐標原點為極點,軸的非負半軸為極軸建立極坐標系.已知曲線的極坐標方程為,直線的參數方程為(為參數).
(1)分別求出曲線和直線的直角坐標方程;
(2)若點在曲線上,且到直線的距離為1,求滿足這樣條件的點的個數.
查看答案和解析>>
科目: 來源: 題型:
【題目】直角坐標平面內,每個點繞原點按逆時針方向旋轉的變換所對應的矩陣為,每個點橫、縱坐標分別變?yōu)樵瓉淼?/span>倍的變換所對應的矩陣為.
(I)求矩陣的逆矩陣;
(Ⅱ)求曲線先在變換作用下,然后在變換作用下得到的曲線方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】(本小題滿分12分)
如圖在直三棱柱ABC—A1B1C1中,AC=3,BC=4,AB=5,AA1=4,點D是AB的
中點.
(1) 求證: AC⊥BC1
(2) 求證:AC1∥平面CDB1
(3) 求異面直線AC1與B1C所成角的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某市公園內的人工湖上有一個以點為圓心的圓形噴泉,沿湖有一條小徑,在的另一側建有控制臺,和之間均有小徑連接(小徑均為直路),且,噴泉中心點距離點60米,且連線恰與平行,在小徑上有一拍照點,現測得米, 米,且.
(I)請計算小徑的長度;
(Ⅱ)現打算改建控制臺的位置,其離噴泉盡可能近,在點的位置及大小均不變的前提下,請計算距離的最小值;
(Ⅲ)一人從小徑一端處向處勻速前進時,噴泉恰好同時開啟,噴泉開啟分鐘后的水幕是一個以為圓心,半徑米的圓形區(qū)域(含邊界),此人的行進速度是米/分鐘,在這個人行進的過程中他會被水幕沾染,試求實數的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】“微信運動”已成為當下熱門的健身方式,小王的微信朋友圈內也有大量好友參與了“微信運動”,他隨機選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數,并將數據整理如下:
(1)若采用樣本估計總體的方式,試估計小王的所有微信好友中每日走路步數超過5000步的概率;
(2)已知某人一天的走路步數超過8000步被系統評定“積極型”,否則為“懈怠型”,根據題意完成下面的列聯表,并據此判斷能否有95%以上的把握認為“評定類型”與“性別”有關?
查看答案和解析>>
科目: 來源: 題型:
【題目】中國古代名詞“芻童”原來是草堆的意思,古代用它作為長方體棱臺(上、下底面均為矩形額棱臺)的專用術語,關于“芻童”體積計算的描述,《九章算術》注曰:“倍上表,下表從之,亦倍小表,上表從之,各以其廣乘之,并,以高若深乘之,皆六面一.”其計算方法是:將上底面的長乘二,與下底面的長相加,再與上底面的寬相乘;將下底面的長乘二,與上底面的長相加,再與下底面的寬相乘;把這兩個數值相加,與高相乘,再取其六分之一,以此算法,現有上下底面為相似矩形的棱臺,相似比為,高為3,且上底面的周長為6,則該棱臺的體積的最大值是( )
A. 14 B. 56 C. D. 63
查看答案和解析>>
科目: 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,曲線過點,其參數方程為 (為參數,),以為極點,軸非負半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求曲線的普通方程和曲線的直角坐標方程;
(2)求已知曲線和曲線交于,兩點,且,求實數的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com