科目: 來源: 題型:
【題目】在平面直角坐標系中,已知直線的參數(shù)方程為(為參數(shù)).在以坐標原點為極點,軸的正半軸為極軸,且與直角坐標系長度單位相同的極坐標系中,曲線的極坐標方程是.
(1)求直線的普通方程與曲線的直角坐標方程;
(2)設(shè)點.若直與曲線相交于兩點,求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某縣位于沙漠地帶,人與自然長期進行頑強的斗爭,到1998年底全縣的綠化率已達到30%。從1999年開始,每年將出現(xiàn)這樣的局面,即原有沙漠面積的16%將被綠化,與此同時,由于各種原因,原有綠化面積的4%又被沙化。
(1)設(shè)全縣面積為1,1998年底綠化總面積為,經(jīng)過n年后綠化總面積為,求證:。
(2)至少需要多少年的努力,才能使全縣的綠化率超過60%?(年取整數(shù),lg2=0.3010)
查看答案和解析>>
科目: 來源: 題型:
【題目】一個車間為了規(guī)定工時定額,需要確定加工某種零件所花費的時同,為此進行了6次試驗,收集數(shù)據(jù)如下:
零件數(shù)x(個) | 1 | 2 | 3 | 4 | 5 | 6 |
加工時間y(小時) | 3.5 | 5 | 6 | 7.5 | 9 | 11 |
(1)在給定的坐標系中畫出散點圖,并指出兩個變量是正相關(guān)還是負相關(guān);
(2)求回歸直線方程;
(3)試預(yù)測加工7個零件所花費的時間?
附:對于一組數(shù)據(jù),,……,,其回歸直線的斜率和截距的最小二乘估計分別為:
,.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知是橢圓的左、右焦點,點在橢圓上,線段與軸的交點滿足.
(1)求橢圓的標準方程;
(2)過點作不與軸重合的直線,設(shè)與圓相交于兩點,與橢圓相交于兩點,當且時,求的面積的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】當今,手機已經(jīng)成為人們不可或缺的交流工具,人們常常把喜歡玩手機的人冠上了名號“低頭族”,手機已經(jīng)嚴重影響了人們的生活.一媒體為調(diào)查市民對低頭族的認識,從某社區(qū)的500名市民中隨機抽取n名市民,按年齡情況進行統(tǒng)計的頻率分布表和頻率分布直方圖如圖:
組數(shù) | 分組(單位:歲) | 頻數(shù) | 頻率 |
1 | 5 | 0.05 | |
2 | 20 | 0.20 | |
3 | a | 0.35 | |
4 | 30 | b | |
5 | 10 | 0.10 | |
合計 | n | 1.00 |
(1)求出表中a,b,n的值,并補全頻率分布直方圖;
(2)媒體記者為了做好調(diào)查工作,決定在第2,4,5組中用分層抽樣的方法抽取6名市民進行問卷調(diào)查,再從這6名1民中隨機抽取2名接受電視采訪,求第2組至少有一名接受電視采訪的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】一只口袋有形狀大小質(zhì)地都相同的只小球,這只小球上分別標記著數(shù)字.
甲乙丙三名學(xué)生約定:
()每個不放回地隨機摸取一個球;
()按照甲乙丙的次序一次摸;
()誰摸取的球的數(shù)字對打,誰就獲勝.
用有序數(shù)組表示這個試驗的基本事件,例如:表示在一次試驗中,甲摸取的是數(shù)字,乙摸取的是數(shù)字,丙摸取的是數(shù)字;表示在一次實驗中,甲摸取的是數(shù),乙摸取的是數(shù)字,丙摸取的是數(shù)字.
(Ⅰ)列出基本事件,并指出基本事件的總數(shù);
(Ⅱ)求甲獲勝的概率;
(Ⅲ)寫出乙獲勝的概率,并指出甲乙丙三名同學(xué)獲勝的概率與其摸取的次序是否有關(guān)?
查看答案和解析>>
科目: 來源: 題型:
【題目】(本小題滿分12分)為預(yù)防H1N1病毒爆發(fā),某生物技術(shù)公司研制出一種新流感
疫苗,為測試該疫苗的有效性(若疫苗有效的概率小于90%,則認為測試沒有通過),公司
選定2000個流感樣本分成三組,測試結(jié)果如下表:
分組 | A組 | B組 | C組 |
疫苗有效 | 673 | ||
疫苗無效 | 77 | 90 |
已知在全體樣本中隨機抽取1個,抽到B組疫苗有效的概率是0.33.
(I)現(xiàn)用分層抽樣的方法在全體樣本中抽取360個測試結(jié)果,問應(yīng)在C組抽取樣本多少個?
(II)已知,,求通過測試的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓: 的離心率為,以原點為圓心,橢圓的長半軸為半徑的圓與直線相切.
(1)求橢圓的標準方程;
(2)已知點, 為動直線與橢圓的兩個交點,問:在軸上是否存在點,使為定值?若存在,試求出點的坐標和定值,若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知直線與圓交于,兩點,過點的直線與圓交于,兩點.
若直線垂直平分弦,求實數(shù)的值;
已知點,在直線上(為圓心),存在定點(異于點),滿足:對于圓上任一點,都有為同一常數(shù),試求所有滿足條件的點的坐標及該常數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com