科目: 來源: 題型:
【題目】某學校為了加強學生數(shù)學核心素養(yǎng)的培養(yǎng),鍛煉學生自主探究學習的能力,他們以函數(shù)為基本素材,研究該函數(shù)的相關性質(zhì),取得部分研究成果如下:其中研究成果正確的是( )
A.同學甲發(fā)現(xiàn):函數(shù)的定義域為(﹣1,1),且f(x)是偶函數(shù)
B.同學乙發(fā)現(xiàn):對于任意的x∈(﹣1,1),都有
C.同學丙發(fā)現(xiàn):對于任意的a,b∈(﹣1,1),都有
D.同學丁發(fā)現(xiàn):對于函數(shù)定義域內(nèi)任意兩個不同的實數(shù)x1,x2,總滿足
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)).以原點為極點,軸的非負半軸為極軸建立極坐標系,直線的極坐標方程為.
(1)求的極坐標方程;
(2)若曲線的極坐標方程為,直線與在第一象限的交點為,與的交點為(異于原點),求.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)(且)的圖象過點,.若函數(shù)在定義域內(nèi)存在實數(shù)t,使得成立,則稱函數(shù)具有性質(zhì)M.
(1)求實數(shù)a的值;
(2)判斷函數(shù)是否具有性質(zhì)M?并說明理由;
(3)證明:函數(shù)具有性質(zhì)M.
查看答案和解析>>
科目: 來源: 題型:
【題目】甲、乙二人獨立破譯同一密碼,甲破譯密碼的概率為,乙破譯密碼的概率為.記事件A:甲破譯密碼,事件B:乙破譯密碼.
(1)求甲、乙二人都破譯密碼的概率;
(2)求恰有一人破譯密碼的概率;
(3)小明同學解答“求密碼被破譯的概率”的過程如下:
解:“密碼被破譯”也就是“甲、乙二人中至少有一人破譯密碼”所以隨機事件“密碼被破譯”可以表示為所以
請指出小明同學錯誤的原因?并給出正確解答過程.
查看答案和解析>>
科目: 來源: 題型:
【題目】《九章算術》中“勾股容方”問題:“今有勾五步,股十二步,問勾中容方幾何?”魏晉時期數(shù)學家劉徽在其《九章算術注》中利用出入相補原理給出了這個問題的一般解法:如圖1,用對角線將長和寬分別為和的矩形分成兩個直角三角形,每個直角三角形再分成一個內(nèi)接正方形(黃)和兩個小直角三角形(朱、青).將三種顏色的圖形進行重組,得到如圖2所示的矩形.該矩形長為,寬為內(nèi)接正方形的邊長.由劉徽構造的圖形還可以得到許多重要的結論,如圖3.設為斜邊的中點,作直角三角形的內(nèi)接正方形對角線,過點作于點,則下列推理正確的是( )
①由圖1和圖2面積相等得;
②由可得;
③由可得;
④由可得.
A.①②③④B.①②④C.②③④D.①③
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四棱錐中,底面是平行四邊形,平面,,,是棱上的一點.
(1)證明:平面;
(2)若平面,求的值;
(3)在(2)的條件下,三棱錐的體積是18,求點到平面的距離.
查看答案和解析>>
科目: 來源: 題型:
【題目】“中國大能手”是央視推出的一檔大型職業(yè)技能挑戰(zhàn)賽類節(jié)目,旨在通過該節(jié)目,在全社會傳播和弘揚“勞動光榮、技能寶貴、創(chuàng)造偉大”的時代風尚.某公司準備派出選手代表公司參加“中國大能手”職業(yè)技能挑戰(zhàn)賽.經(jīng)過層層選拔,最后集中在甲、乙兩位選手在一項關鍵技能的區(qū)分上,選手完成該項挑戰(zhàn)的時間越少越好.已知這兩位選手在15次挑戰(zhàn)訓練中,完成該項關鍵技能挑戰(zhàn)所用的時間(單位:秒)及挑戰(zhàn)失。ㄓ谩啊痢北硎荆┑那闆r如下表1:
序號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
甲 | × | 96 | 93 | × | 92 | × | 90 | 86 | × | × | 83 | 80 | 78 | 77 | 75 |
乙 | × | 95 | × | 93 | × | 92 | × | 88 | 83 | × | 82 | 80 | 80 | 74 | 73 |
據(jù)表1中甲、乙兩選手完成該項關鍵技能挑戰(zhàn)成功所用時間的數(shù)據(jù),應用統(tǒng)計軟件得下表2:
數(shù)字特征 | 均值(單位:秒)方差 | 方差 |
甲 | 85 | 50.2 |
乙 | 84 | 54 |
(1)在表1中,從選手甲完成挑戰(zhàn)用時低于90秒的成績中,任取2個,求這2個成績都低于80秒的概率;
(2)若該公司只有一個參賽名額,以該關鍵技能挑戰(zhàn)成績?yōu)闃藴,根?jù)以上信息,判斷哪位選手代表公司參加職業(yè)技能挑戰(zhàn)賽更合適?請說明你的理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】中學生研學旅行是通過集體旅行、集中食宿方式開展的研究性學習和旅行體驗相結合的校外教育活動,是學校教育和校外教育銜接的創(chuàng)新形式,是綜合實踐育人的有效途徑.每年暑期都會有大量中學生參加研學旅行活動.為了解某地區(qū)中學生暑期研學旅行支出情況,在該地區(qū)各個中學隨機抽取了部分中學生進行問卷調(diào)查,從中統(tǒng)計得到中學生暑期研學旅行支出(單位:百元)頻率分布直方圖如圖所示.
(1)利用分層抽樣在,,三組中抽取5人,應從這三組中各抽取幾人?
(2)從(1)抽取的5人中隨機選出2人,對其消費情況進行進一步分析,求這2人不在同一組的概率;
(3)假設同組中的每個數(shù)據(jù)都用該區(qū)間的左端點值代替,估計該地區(qū)中學生暑期研學旅行支出的平均值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com