科目: 來源: 題型:
【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點.
(Ⅰ)證明:PB∥平面AEC;
(Ⅱ)設PC與平面ABCD所成的角的正弦為,AP=1,AD=,求三棱錐E-ACD的體積.
查看答案和解析>>
科目: 來源: 題型:
【題目】某高中有高一新生500名,分成水平相同的兩類教學實驗,為對比教學效果,現(xiàn)用分層抽樣的方法從兩類學生中分別抽取了40人,60人進行測試
(1)求該學校高一新生兩類學生各多少人?
(2)經過測試,得到以下三個數(shù)據(jù)圖表:
圖1:75分以上兩類參加測試學生成績的莖葉圖
圖2:100名測試學生成績的頻率分布直方圖
下圖表格:100名學生成績分布表:
①先填寫頻率分布表中的六個空格,然后將頻率分布直方圖(圖2)補充完整;
②該學校擬定從參加考試的79分以上(含79分)的類學生中隨機抽取2人代表學校參加市比賽,求抽到的2人分數(shù)都在80分以上的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程是(t是參數(shù)),以坐標原點為極點,x軸正半軸為極軸建立極坐標系,曲線的極坐標方程是。
(1)求曲線的普通方程和曲線的直角坐標方程;
(2)若兩曲線交點為,求
查看答案和解析>>
科目: 來源: 題型:
【題目】橢圓的左、右焦點分別為,右頂點為A,上頂點為B,且滿足向量 。
(1)若,求橢圓的標準方程;
(2)設為橢圓上異于頂點的點,以線段PB為直徑的圓經過F1,問是否存在過F2的直線與該圓相切?若存在,求出其斜率;若不存在,說明理由。
查看答案和解析>>
科目: 來源: 題型:
【題目】隨著智能手機的普及,使用手機上網成為了人們日常生活的一部分,很多消費者對手機流量的需求越來越大.長沙某通信公司為了更好地滿足消費者對流量的需求,準備推出一款流量包.該通信公司選了5個城市(總人數(shù)、經濟發(fā)展情況、消費能力等方面比較接近)采用不同的定價方案作為試點,經過一個月的統(tǒng)計,發(fā)現(xiàn)該流量包的定價:(單位:元/月)和購買人數(shù)(單位:萬人)的關系如表:
(1)根據(jù)表中的數(shù)據(jù),運用相關系數(shù)進行分析說明,是否可以用線性回歸模型擬合與的關系?并指出是正相關還是負相關;
(2)①求出關于的回歸方程;
②若該通信公司在一個類似于試點的城市中將這款流量包的價格定位25元/ 月,請用所求回歸方程預測長沙市一個月內購買該流量包的人數(shù)能否超過20 萬人.
參考數(shù)據(jù):,,.
參考公式:相關系數(shù),回歸直線方程,
其中,.
查看答案和解析>>
科目: 來源: 題型:
【題目】2018年6月14日,世界杯足球賽在俄羅斯拉開帷幕,世界杯給俄羅斯經濟帶來了一定的增長,某紀念商品店的銷售人員為了統(tǒng)計世界杯足球賽期間商品的銷售情況,隨機抽查了該商品商店某天200名顧客的消費金額情況,得到如圖頻率分布表:將消費顧客超過4萬盧布的顧客定義為”足球迷”,消費金額不超過4萬盧布的顧客定義為“非足球迷”。
消費金額/萬盧布 | 合計 | ||||||
顧客人數(shù) | 9 | 31 | 36 | 44 | 62 | 18 | 200 |
(1)求這200名顧客消費金額的中位數(shù)與平均數(shù)(同一組中的消費金額用該組的中點值作代表;
(2)該紀念品商店的銷售人員為了進一步了解這200名顧客喜歡紀念品的類型,采用分層抽樣的方法從“非足球迷”,“足球迷”中選取5人,再從這5人中隨機選取3人進行問卷調查,則選取的3人中“非足球迷”人數(shù)的分布列和數(shù)學期望。
查看答案和解析>>
科目: 來源: 題型:
【題目】2019年的天貓“雙11”交易金額又創(chuàng)新高,達到2684億元,物流爆增.某機構為了了解網購者對收到快遞的滿意度進行調查,對某市5000名網購者發(fā)出滿意度調查評分表,收集并隨機抽取了200名網購者的調查評分(評分在70~100分之間),其頻率分布直方圖如圖,評分在95分及以上確定為“非常滿意”.
(1)求的值;
(2)以樣本的頻率作概率,試估計本次調查的網購者中“非常滿意”的人數(shù);
(3)按分層抽樣的方法,從評分在90分及以上的網購者中抽取6人,再從這6人中隨機地選取2人,求至少選到一個“非常滿意”的概率.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com