相關習題
 0  263682  263690  263696  263700  263706  263708  263712  263718  263720  263726  263732  263736  263738  263742  263748  263750  263756  263760  263762  263766  263768  263772  263774  263776  263777  263778  263780  263781  263782  263784  263786  263790  263792  263796  263798  263802  263808  263810  263816  263820  263822  263826  263832  263838  263840  263846  263850  263852  263858  263862  263868  263876  266669 

科目: 來源: 題型:

【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點.

(Ⅰ)證明:PB∥平面AEC;

(Ⅱ)設PC與平面ABCD所成的角的正弦為,AP=1,AD=,求三棱錐E-ACD的體積.

查看答案和解析>>

科目: 來源: 題型:

【題目】某高中有高一新生500名,分成水平相同的兩類教學實驗,為對比教學效果,現(xiàn)用分層抽樣的方法從兩類學生中分別抽取了40人,60人進行測試

1)求該學校高一新生兩類學生各多少人?

2)經過測試,得到以下三個數(shù)據(jù)圖表:

175分以上兩類參加測試學生成績的莖葉圖

2100名測試學生成績的頻率分布直方圖

下圖表格:100名學生成績分布表:

先填寫頻率分布表中的六個空格,然后將頻率分布直方圖(圖2)補充完整;

該學校擬定從參加考試的79分以上(含79分)的類學生中隨機抽取2人代表學校參加市比賽,求抽到的2人分數(shù)都在80分以上的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程是t是參數(shù)),以坐標原點為極點,x軸正半軸為極軸建立極坐標系,曲線的極坐標方程是。

(1)求曲線的普通方程和曲線的直角坐標方程;

(2)若兩曲線交點為,求

查看答案和解析>>

科目: 來源: 題型:

【題目】已知.

(1),求的取值范圍;

(2),且,證明:。

查看答案和解析>>

科目: 來源: 題型:

【題目】橢圓的左、右焦點分別為,右頂點為A,上頂點為B,且滿足向量 。

(1),求橢圓的標準方程;

(2)為橢圓上異于頂點的點,以線段PB為直徑的圓經過F1,問是否存在過F2的直線與該圓相切?若存在,求出其斜率;若不存在,說明理由。

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在三棱錐中,是邊長為4的正三角形, ,分別為的中點,且.

(1)證明:平面ABC;

(2)求二面角的余弦值;

(3)求點到平面的距離.

查看答案和解析>>

科目: 來源: 題型:

【題目】隨著智能手機的普及,使用手機上網成為了人們日常生活的一部分,很多消費者對手機流量的需求越來越大.長沙某通信公司為了更好地滿足消費者對流量的需求,準備推出一款流量包.該通信公司選了5個城市(總人數(shù)、經濟發(fā)展情況、消費能力等方面比較接近)采用不同的定價方案作為試點,經過一個月的統(tǒng)計,發(fā)現(xiàn)該流量包的定價:(單位:元/月)和購買人數(shù)(單位:萬人)的關系如表:

(1)根據(jù)表中的數(shù)據(jù),運用相關系數(shù)進行分析說明,是否可以用線性回歸模型擬合的關系?并指出是正相關還是負相關;

(2)①求出關于的回歸方程;

②若該通信公司在一個類似于試點的城市中將這款流量包的價格定位25元/ 月,請用所求回歸方程預測長沙市一個月內購買該流量包的人數(shù)能否超過20 萬人.

參考數(shù)據(jù):,.

參考公式:相關系數(shù),回歸直線方程,

其中,.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知、是橢圓和雙曲線的公共焦點,是他們的一個公共點,且,則橢圓和雙曲線的離心率的倒數(shù)之和的最大值為___.

查看答案和解析>>

科目: 來源: 題型:

【題目】2018614日,世界杯足球賽在俄羅斯拉開帷幕,世界杯給俄羅斯經濟帶來了一定的增長,某紀念商品店的銷售人員為了統(tǒng)計世界杯足球賽期間商品的銷售情況,隨機抽查了該商品商店某天200名顧客的消費金額情況,得到如圖頻率分布表:將消費顧客超過4萬盧布的顧客定義為足球迷”,消費金額不超過4萬盧布的顧客定義為“非足球迷”。

消費金額/萬盧布

合計

顧客人數(shù)

9

31

36

44

62

18

200

(1)求這200名顧客消費金額的中位數(shù)與平均數(shù)(同一組中的消費金額用該組的中點值作代表;

(2)該紀念品商店的銷售人員為了進一步了解這200名顧客喜歡紀念品的類型,采用分層抽樣的方法從“非足球迷”,“足球迷”中選取5人,再從這5人中隨機選取3人進行問卷調查,則選取的3人中“非足球迷”人數(shù)的分布列和數(shù)學期望。

查看答案和解析>>

科目: 來源: 題型:

【題目】2019年的天貓“雙11”交易金額又創(chuàng)新高,達到2684億元,物流爆增.某機構為了了解網購者對收到快遞的滿意度進行調查,對某市5000名網購者發(fā)出滿意度調查評分表,收集并隨機抽取了200名網購者的調查評分(評分在70100分之間),其頻率分布直方圖如圖,評分在95分及以上確定為“非常滿意”.

1)求的值;

2)以樣本的頻率作概率,試估計本次調查的網購者中“非常滿意”的人數(shù);

3)按分層抽樣的方法,從評分在90分及以上的網購者中抽取6人,再從這6人中隨機地選取2人,求至少選到一個“非常滿意”的概率.

查看答案和解析>>

同步練習冊答案