科目: 來源: 題型:
【題目】[選修4-4:坐標系與參數(shù)方程]
已知曲線的極坐標方程為,以極點為直角坐標原點,以極軸為軸的正半軸建立平面直角坐標系,將曲線向左平移個單位長度,再將得到的曲線上的每一個點的橫坐標縮短為原來的,縱坐標保持不變,得到曲線
(1)求曲線的直角坐標方程;
(2)已知直線的參數(shù)方程為,(為參數(shù)),點為曲線上的動點,求點到直線距離的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的離心率為,右焦點為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切.
(1)求橢圓的方程;
(2)如圖,過定點的直線交橢圓于兩點,連接并延長交于,求證:.
查看答案和解析>>
科目: 來源: 題型:
【題目】對于曲線,若存在非負實常數(shù)和,使得曲線上任意一點有成立(其中為坐標原點),則稱曲線為既有外界又有內界的曲線,簡稱“有界曲線”,并將最小的外界成為曲線的外確界,最大的內界成為曲線的內確界.
(1)曲線與曲線是否為“有界曲線”?若是,求出其外確界與內確界;若不是,請說明理由;
(2)已知曲線上任意一點到定點,的距離之積為常數(shù),求曲線的外確界與內確界.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示的“8”字形曲線是由兩個關于軸對稱的半圓和一個雙曲線的一部分組成的圖形,其中上半個圓所在圓方程是,雙曲線的左、右頂點、是該圓與軸的交點,雙曲線與半圓相交于與軸平行的直徑的兩端點.
(1)試求雙曲線的標準方程;
(2)記雙曲線的左、右焦點為、,試在“8”字形曲線上求點,使得是直角.
查看答案和解析>>
科目: 來源: 題型:
【題目】矩陣乘法運算的幾何意義為平面上的點在矩陣的作用下變換成點,記,且.
(1)若平面上的點在矩陣的作用下變換成點,求點的坐標;
(2)若平面上相異的兩點、在矩陣的作用下,分別變換為點、,求證:若點為線段上的點,則點在的作用下的點在線段上;
(3)已知△的頂點坐標為、、,且△在矩陣作用下變換成△,記△與△的面積分別為與,求的值,并寫出一般情況(三角形形狀一般化且變換矩陣一般化)下與的關系(不要求證明).
查看答案和解析>>
科目: 來源: 題型:
【題目】某小學舉辦“父母養(yǎng)育我,我報父母恩”的活動,對六個年級(一年級到六年級的年級代碼分別為1,2…,6)的學生給父母洗腳的百分比y%進行了調查統(tǒng)計,繪制得到下面的散點圖.
(1)由散點圖看出,可用線性回歸模型擬合y與x的關系,請用相關系數(shù)加以說明;
(2)建立y關于x的回歸方程,并據此預計該校學生升入中學的第一年(年級代碼為7)給父母洗腳的百分比.
附注:參考數(shù)據:
參考公式:相關系數(shù),若r>0.95,則y與x的線性相關程度相當高,可用線性回歸模型擬合y與x的關系.回歸方程中斜率與截距的最小二乘估計公式分別為= ,.
查看答案和解析>>
科目: 來源: 題型:
【題目】對于項數(shù)為()的有窮正整數(shù)數(shù)列,記(),即為中的最大值,稱數(shù)列為數(shù)列的“創(chuàng)新數(shù)列”.比如的“創(chuàng)新數(shù)列”為.
(1)若數(shù)列的“創(chuàng)新數(shù)列”為1,2,3,4,4,寫出所有可能的數(shù)列;
(2)設數(shù)列為數(shù)列的“創(chuàng)新數(shù)列”,滿足(),求證: ();
(3)設數(shù)列為數(shù)列的“創(chuàng)新數(shù)列”,數(shù)列中的項互不相等且所有項的和等于所有項的積,求出所有的數(shù)列.
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標系中,傾斜角為的直線經過坐標原點,曲線的參數(shù)方程為(為參數(shù)).以點為極點,軸的非負半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求與的極坐標方程;
(2)設與的交點為、,與的交點為、,且,求值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com