科目: 來源: 題型:
【題目】已知橢圓的焦點與雙曲線的焦點重合,并且經過點.
(Ⅰ)求橢圓C的標準方程;
(II) 設橢圓C短軸的上頂點為P,直線不經過P點且與相交于、兩點,若直線PA與直線PB的斜率的和為,判斷直線是否過定點,若是,求出這個定點,否則說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】研究機構對某校學生往返校時間的統(tǒng)計資料表明:該校學生居住地到學校的距離(單位:千米)和學生花費在上學路上的時間(單位:分鐘)有如下的統(tǒng)計資料:
到學校的距離(千米) | 1.8 | 2.6 | 3.1 | 4.3 | 5.5 | 6.1 |
花費的時間(分鐘) | 17.8 | 19.6 | 27.5 | 31.3 | 36.0 | 43.2 |
如果統(tǒng)計資料表明與有線性相關關系,試求:
(1)判斷與是否有很強的線性相關性?
(相關系數(shù)的絕對值大于0.75時,認為兩個變量有很強的線性相關性,精確到0.01)
(2)求線性回歸方程(精確到0.01);
(3)將分鐘的時間數(shù)據(jù)稱為美麗數(shù)據(jù),現(xiàn)從這6個時間數(shù)據(jù)中任取2個,求抽取的2個數(shù)據(jù)全部為美麗數(shù)據(jù)的概率.
參考數(shù)據(jù):,,,,
,
參考公式:,
查看答案和解析>>
科目: 來源: 題型:
【題目】根據(jù)新高考改革方案,某地高考由文理分科考試變?yōu)?/span>“3+3”模式考試.某學校為了解高一年425名學生選課情況,在高一年下學期進行模擬選課,統(tǒng)計得到選課組合排名前4種如下表所示,其中物理、化學、生物為理科,政治、歷史、地理為文科,“√”表示選擇該科,“×”表示未選擇該科,根據(jù)統(tǒng)計數(shù)據(jù),下列判斷錯誤的是
學科 人數(shù) | 物理 | 化學 | 生物 | 政治 | 歷史 | 地理 |
124 | √ | √ | × | × | × | √ |
101 | × | × | √ | × | √ | √ |
86 | × | √ | √ | × | × | √ |
74 | √ | × | √ | × | √ | × |
A. 前4種組合中,選擇生物學科的學生更傾向選擇兩理一文組合
B. 前4種組合中,選擇兩理一文的人數(shù)多于選擇兩文一理的人數(shù)
C. 整個高一年段,選擇地理學科的人數(shù)多于選擇其他任一學科的人數(shù)
D. 整個高一年段,選擇物理學科的人數(shù)多于選擇生物學科的人數(shù)
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù))。在極坐標系(與直角坐標系取相同的長度單位,且以原點為極點,以軸正半軸為極軸)中,圓的極坐標方程為。
(1)求直線的普通方程和圓的直角坐標方程;
(2)設圓與直線交于,兩點,若點的坐標為,求。
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)(為自然對數(shù)的底,為常數(shù),)有兩個極值點,且.
(Ⅰ)求的取值范圍;
(Ⅱ)若恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】某公司生產某種產品,一條流水線年產量為件,該生產線分為兩段,流水線第一段生產的半成品的質量指標會影響第二段生產成品的等級,具體見下表:
第一段生產的半成品質量指標 | 或 | 或 | |
第二段生產的成品為一等品概率 | 0.2 | 0.4 | 0.6 |
第二段生產的成品為二等品概率 | 0.3 | 0.3 | 0.3 |
第二段生產的成品為三等品概率 | 0.5 | 0.3 | 0.1 |
從第一道生產工序抽樣調查了件,得到頻率分布直方圖如圖:
若生產一件一等品、二等品、三等品的利潤分別是元、元、元.
(Ⅰ)以各組的中間值估計為該組半成品的質量指標,估算流水線第一段生產的半成品質量指標的平均值;
(Ⅱ)將頻率估計為概率,試估算一條流水線一年能為該公司創(chuàng)造的利潤;
(Ⅲ)現(xiàn)在市面上有一種設備可以安裝到流水線第一段,價格是萬元,使用壽命是年,安裝這種設備后,流水線第一段半成品的質量指標服從正態(tài)分布,且不影響產量.請你幫該公司作出決策,是否要購買該設備?說明理由.
(參考數(shù)據(jù):,,)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖都是由邊長為1的正方體疊成的幾何體,例如第(1)個幾何體的表面積為6個平方單位,第(2)個幾何體的表面積為18個平方單位,第(3)個幾何體的表面積是36個平方單位.依此規(guī)律,則第個幾何體的表面積是__________個平方單位.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com