相關習題
 0  264193  264201  264207  264211  264217  264219  264223  264229  264231  264237  264243  264247  264249  264253  264259  264261  264267  264271  264273  264277  264279  264283  264285  264287  264288  264289  264291  264292  264293  264295  264297  264301  264303  264307  264309  264313  264319  264321  264327  264331  264333  264337  264343  264349  264351  264357  264361  264363  264369  264373  264379  264387  266669 

科目: 來源: 題型:

【題目】有一名高二學生盼望2020年進入某名牌大學學習,假設該名牌大學有以下條件之一均可錄。孩2020年2月通過考試進入國家數(shù)學奧賽集訓隊(集訓隊從2019年10月省數(shù)學競賽一等獎中選拔):②2020年3月自主招生考試通過并且達到2020年6月高考重點分數(shù)線,③2020年6月高考達到該校錄取分數(shù)線(該校錄取分數(shù)線高于重點線),該學生具備參加省數(shù)學競賽、自主招生和高考的資格且估計自己通過各種考試的概率如下表

省數(shù)學競賽一等獎

自主招生通過

高考達重點線

高考達該校分數(shù)線

0.5

0.6

0.9

0.7

若該學生數(shù)學競賽獲省一等獎,則該學生估計進入國家集訓隊的概率是0.2.若進入國家集訓隊,則提前錄取,若未被錄取,則再按②、③順序依次錄取:前面已經(jīng)被錄取后,不得參加后面的考試或錄取.(注:自主招生考試通過且高考達重點線才能錄。

(Ⅰ)求該學生參加自主招生考試的概率;

(Ⅱ)求該學生參加考試的次數(shù)的分布列及數(shù)學期望;

(Ⅲ)求該學生被該校錄取的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】一組數(shù)據(jù)中的每一個數(shù)據(jù)都乘以2,再減去80,得到一組新數(shù)據(jù),若求得新的數(shù)據(jù)的平均數(shù)是1.2,方差是4.4,則原來數(shù)據(jù)的平均數(shù)和方差分別是(

A.40.6,1.1B.48.8,4.4C.81.244.4D.78.8,75.6

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)有兩個極值點.

(Ⅰ)求的取值范圍;

(Ⅱ)設的兩個極值點,證明:.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知拋物線的準線為上一動點,過點作拋物線的切線,切點分別為.

(I)求證:是直角三角形;

(II)軸上是否存在一定點,使三點共線.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在四棱錐中,底面是平行四邊形,平面,,,,的中點.

(Ⅰ)求證:平面;

(Ⅱ)若,求二面角的大小.

查看答案和解析>>

科目: 來源: 題型:

【題目】用系統(tǒng)抽樣法從140名學生中抽取容量為20的樣本,將140名學生從1140編號.按編號順序平均分成20組(17號,814號,,134140號),若第17組抽出的號碼為117,則第一組中按此抽樣方法確定的號碼是(

A.7B.5C.4D.3

查看答案和解析>>

科目: 來源: 題型:

【題目】某籃球隊甲、乙兩名運動員練習罰球,每人練習10組,每組罰球40個.命中個數(shù)的莖葉圖如圖,則下面結(jié)論中錯誤的一個是(  )

A. 甲的極差是29 B. 甲的中位數(shù)是24

C. 甲罰球命中率比乙高 D. 乙的眾數(shù)是21

查看答案和解析>>

科目: 來源: 題型:

【題目】已知拋物線上橫坐標為的點到焦點的距離為.

1)求拋物線的方程;

2若過點的直線與拋物線交于不同的兩點,且以為直徑的圓過坐標原點,求的面積。

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,三棱柱中,平面,,,點在線段上,且,.

1)試用空間向量證明直線與平面不平行;

2)設平面與平面所成的銳二面角為,若,求的長;

3)在(2)的條件下,設平面平面,求直線與平面的所成角.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù),為實數(shù))有極值,且在處的切線與直線平行.

1)求實數(shù)的取值范圍;

2)是否存在實數(shù),使得函數(shù)的極小值為1,若存在,求出實數(shù)的值;若不存在,請說明理由;

3)設函數(shù) 試證明:上恒成立并證明

查看答案和解析>>

同步練習冊答案