相關(guān)習(xí)題
 0  265221  265229  265235  265239  265245  265247  265251  265257  265259  265265  265271  265275  265277  265281  265287  265289  265295  265299  265301  265305  265307  265311  265313  265315  265316  265317  265319  265320  265321  265323  265325  265329  265331  265335  265337  265341  265347  265349  265355  265359  265361  265365  265371  265377  265379  265385  265389  265391  265397  265401  265407  265415  266669 

科目: 來源: 題型:

【題目】閏月年指農(nóng)歷里有閏月的年份,比如2020年是閏月年,423日至522日為農(nóng)歷四月,523日至620日為農(nóng)歷閏四月.農(nóng)歷置閏月是為了農(nóng)歷年的平均長度接近回歸年:農(nóng)歷年中的朔望月的平均長度為29.5306日,日,回歸年的總長度為365.2422日,兩者相差10.875日.因此,每19年相差206.625日,約等于7個朔望月.這樣每19年就有7個閏月年.以下是1640年至1694年間所有的閏月年:

1640

1642

1645

1648

1651

1653

1656

1659

1661

1664

1667

1670

1672

1675

1678

1680

1 683

1686

1689

1691

1694

則從2020年至2049年,這30年間閏月年的個數(shù)為( )

A.10B.11C.12D.13

查看答案和解析>>

科目: 來源: 題型:

【題目】一個籠子里關(guān)著只貓,其中有只白貓,只黑貓.把籠門打開一個小口,使得每次只能鉆出只貓.貓爭先恐后地往外鉆.如果只貓都鉆出了籠子,以表示只白貓被只黑貓所隔成的段數(shù).例如,在出籠順序為“□■□□□□■□□■”中,則

1)求三只黑貓挨在一起出籠的概率;

2)求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在三棱錐中,已知都是邊長為的等邊三角形,中點,且平面,為線段上一動點,記

(1)當時,求異面直線所成角的余弦值;

(2)當與平面所成角的正弦值為時,求的值

查看答案和解析>>

科目: 來源: 題型:

【題目】已知數(shù)列的各項均為非零實數(shù),其前項和為,且.

1)若,求的值;

2)若,求證:數(shù)列是等差數(shù)列;

3)若,,是否存在實數(shù),使得對任意正整數(shù)恒成立,若存在,求實數(shù)的取值范圍,若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù).

1)若曲線與直線處相切.

①求的值;

②求證:當時,;

2)當時,關(guān)于的不等式有解,求實數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在平面直角坐標系中,橢圓的右準線為直線,左頂點為,右焦點為. 已知斜率為2的直線經(jīng)過點,與橢圓相交于兩點,且到直線的距離為

1)求橢圓的標準方程;

2)若過的直線與直線分別相交于兩點,且,求的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,邊長為1的正方形區(qū)域OABC內(nèi)有以OA為半徑的圓弧.現(xiàn)決定從AB邊上一點D引一條線段DE與圓弧相切于點E,從而將正方形區(qū)域OABC分成三塊:扇形COE為區(qū)域I,四邊形OADE為區(qū)域II,剩下的CBDE為區(qū)域III.區(qū)域I內(nèi)栽樹,區(qū)域II內(nèi)種花,區(qū)域III內(nèi)植草.每單位平方的樹、花、草所需費用分別為、,總造價是W,設(shè)

1)分別用表示區(qū)域I、II、III的面積;

2)將總造價W表示為的函數(shù),并寫出定義域;

3)求為何值時,總造價W取最小值?

查看答案和解析>>

科目: 來源: 題型:

【題目】已知.

1)討論的單調(diào)性;

2)當時,對任意的,,且,都有,求實數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】在直角坐標系xOy上取兩個定點A1,0),A2,0),再取兩個動點N10m),N20,n),且mn2.

1)求直線A1N1A2N2交點M的軌跡C的方程;

2)過R3,0)的直線與軌跡C交于P,Q,過PPNx軸且與軌跡C交于另一點N,F為軌跡C的右焦點,若λ1),求證:.

查看答案和解析>>

科目: 來源: 題型:

【題目】在“挑戰(zhàn)不可能”的電視節(jié)目上,甲、乙、丙三個人組成的解密團隊參加一項解密挑戰(zhàn)活動,規(guī)則是由密碼專家給出題目,然后由個人依次出場解密,每人限定時間是分鐘內(nèi),否則派下一個人.個人中只要有一人解密正確,則認為該團隊挑戰(zhàn)成功,否則挑戰(zhàn)失敗.根據(jù)甲以往解密測試情況,抽取了甲次的測試記錄,繪制了如下的頻率分布直方圖.

1)若甲解密成功所需時間的中位數(shù)為,求、的值,并求出甲在分鐘內(nèi)解密成功的頻率;

2)在“挑戰(zhàn)不可能”節(jié)目上由于來自各方及自身的心理壓力,甲,乙,丙解密成功的概率分別為,其中表示第個出場選手解密成功的概率,并且定義為甲抽樣中解密成功的頻率代替,各人是否解密成功相互獨立.

求該團隊挑戰(zhàn)成功的概率;

該團隊以從小到大的順序按排甲、乙、丙三個人上場解密,求團隊挑戰(zhàn)成功所需派出的人員數(shù)目的分布列與數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案