科目: 來源: 題型:
【題目】已知橢圓C:的長(zhǎng)軸長(zhǎng)為4,離心率為,點(diǎn)P在橢圓C上.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn)M (4,0),點(diǎn)N(0,n),若以PM為直徑的圓恰好經(jīng)過線段PN的中點(diǎn),求n的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四棱錐S-ABCD中,底面ABCD為直角梯形,AD//BC,∠SAD =∠DAB= ,SA=3,SB=5,,,.
(1)求證:AB平面SAD;
(2)求平面SCD與平面SAB所成的銳二面角的余弦值;
(3)點(diǎn)E,F分別為線段BC,SB上的一點(diǎn),若平面AEF//平面SCD,求三棱錐B-AEF的體積.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了解某地區(qū)初中學(xué)生的體質(zhì)健康情況,統(tǒng)計(jì)了該地區(qū)8所學(xué)校學(xué)生的體質(zhì)健康數(shù)據(jù),按總分評(píng)定等級(jí)為優(yōu)秀,良好,及格,不及格.良好及其以上的比例之和超過40%的學(xué)校為先進(jìn)校.各等級(jí)學(xué)生人數(shù)占該校學(xué)生總?cè)藬?shù)的比例如下表:
比例 學(xué)校 等級(jí) | 學(xué)校A | 學(xué)校B | 學(xué)校C | 學(xué)校D | 學(xué)校E | 學(xué)校F | 學(xué)校G | 學(xué)校H |
優(yōu)秀 | 8% | 3% | 2% | 9% | 1% | 22% | 2% | 3% |
良好 | 37% | 50% | 23% | 30% | 45% | 46% | 37% | 35% |
及格 | 22% | 30% | 33% | 26% | 22% | 17% | 23% | 38% |
不及格 | 33% | 17% | 42% | 35% | 32% | 15% | 38% | 24% |
(1)從8所學(xué)校中隨機(jī)選出一所學(xué)校,求該校為先進(jìn)校的概率;
(2)從8所學(xué)校中隨機(jī)選出兩所學(xué)校,記這兩所學(xué)校中不及格比例低于30%的學(xué)校個(gè)數(shù)為X,求X的分布列;
(3)設(shè)8所學(xué)校優(yōu)秀比例的方差為S12,良好及其以下比例之和的方差為S22,比較S12與S22的大小.(只寫出結(jié)果)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,某城市中心花園的邊界是圓心為O,直徑為1千米的圓,花園一側(cè)有一條直線型公路l,花園中間有一條公路AB(AB是圓O的直徑),規(guī)劃在公路l上選兩個(gè)點(diǎn)P,Q,并修建兩段直線型道路PB,QA.規(guī)劃要求:道路PB,QA不穿過花園.已知,(CD為垂足),測(cè)得OC=0.9,BD=1.2(單位:千米).已知修建道路費(fèi)用為m元/千米.在規(guī)劃要求下,修建道路總費(fèi)用的最小值為_____元.
查看答案和解析>>
科目: 來源: 題型:
【題目】關(guān)于函數(shù)有以下三個(gè)判斷
①函數(shù)恒有兩個(gè)零點(diǎn)且兩個(gè)零點(diǎn)之積為-1;
②函數(shù)恒有兩個(gè)極值點(diǎn)且兩個(gè)極值點(diǎn)之積為-1;
③若是函數(shù)的一個(gè)極值點(diǎn),則函數(shù)極小值為-1.
其中正確判斷的個(gè)數(shù)有( )
A.0個(gè)B.1個(gè)C.個(gè)D.個(gè)
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)在區(qū)間上的最大值為,最小值為,記
(1)求實(shí)數(shù)、的值;
(2)若不等式成立,求實(shí)數(shù)的取值范圍;
(3)對(duì)于任意滿足的自變量,,,,,,如果存在一個(gè)常數(shù),使得定義在區(qū)間上的一個(gè)函數(shù),有恒成立,則稱為區(qū)間上的有界變差函數(shù),試判斷是否區(qū)間上的有界變差函數(shù),若是,求出的最小值;若不是,請(qǐng)說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知,是函數(shù)的兩個(gè)零點(diǎn),其中常數(shù),,設(shè).
(Ⅰ)用,表示,;
(Ⅱ)求證:;
(Ⅲ)求證:對(duì)任意的.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的長(zhǎng)軸為,且過點(diǎn)
(1)求橢圓的方程;
(2)設(shè)點(diǎn)為原點(diǎn),若點(diǎn)在曲線上,點(diǎn)在直線上,且,試判斷直線與圓的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目: 來源: 題型:
【題目】若函數(shù)f(x)=cos(asinx)﹣sin(bcosx)沒有零點(diǎn),則a2+b2的取值范圍是( )
A.[0,1)B.[0,π2)C.D.[0,π)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com