A. | -15 | B. | 15 | C. | 20 | D. | -20 |
分析 由條件求得n=6,再利用二項(xiàng)展開(kāi)式的通項(xiàng)公式,求得${({\sqrt{x}-\frac{1}{{\sqrt{x}}}})^n}$的展開(kāi)式中的常數(shù)項(xiàng).
解答 解:∵(1+x)+(1+x)2+(1+x)3+…+(1+x)n=a0+a1x+a2x2+…+anxn,
∴令x=1,可得2+22+23+…+2n=a0+a1+a2+…+an=126,即 $\frac{2(1{-2}^{n})}{1-2}$=126,2n+1=128,∴n=6.
根據(jù) ${({\sqrt{x}-\frac{1}{{\sqrt{x}}}})^n}$=${(\sqrt{x}-\frac{1}{\sqrt{x}})}^{6}$ 的通項(xiàng)公式為T(mén)r+1=${C}_{6}^{r}$•(-1)r•x3-r,
令3-r=0,求得r=3,可得展開(kāi)式中的常數(shù)項(xiàng)為-${C}_{6}^{3}$=-20,
故選:D.
點(diǎn)評(píng) 本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開(kāi)式的通項(xiàng)公式,求展開(kāi)式中某項(xiàng)的系數(shù),二項(xiàng)式系數(shù)的性質(zhì),屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 直線(xiàn)y=-$\frac{1}{2}$x | B. | 直線(xiàn)y=$\frac{1}{2}$x | C. | 直線(xiàn)y=-$\frac{1}{2}$ | D. | 直線(xiàn)x=-$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -32 | B. | -6 | C. | 6 | D. | 64 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{9}$ | B. | $\frac{2}{9}$ | C. | $\frac{4}{9}$ | D. | $\frac{8}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com