已知直線y=2x+k與x軸的交點(diǎn)為(-2,0),則關(guān)于x的不等式2x+k<0的解集是( 。
A.x>-2B.x≥-2C.x<-2D.x≤-2
C
請(qǐng)?jiān)谶@里輸入關(guān)鍵詞:
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知直線y=2x+4與x軸、y軸分別相交于A、C兩點(diǎn),拋物線y=ax2+bx+c(a≠0)經(jīng)過點(diǎn)A、C和x軸上的另一點(diǎn)B(1,0).
(1)求拋物線的解析式,并畫出函數(shù)圖象略圖;
(2)在直線AC上求點(diǎn)P,使以點(diǎn)A、B、P為頂點(diǎn)的三角形與△AOC相似;
(3)設(shè)拋物線的頂點(diǎn)為M,在拋物線上是否存在點(diǎn)Q,使△ABQ的面積等于△AMC面積的8倍?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

3、已知直線y=2x+k與x軸的交點(diǎn)為(-2,0),則關(guān)于x的不等式2x+k<0的解集是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知直線ln:y=-
n+1
n
x+
1
n
(n是不為零的自然數(shù)).當(dāng)n=1時(shí),直線l1:y=-2x+1與x軸和y軸分別交于點(diǎn)A1和B1,設(shè)△A1OB1(其中O是平面直角坐標(biāo)系的原點(diǎn))的面積為S1;當(dāng)n=2時(shí),直線l2:y=-
3
2
x+
1
2
與x軸和y軸分別交于點(diǎn)A2和B2,設(shè)△A2OB2的面積為S2;…依此類推,直線ln與x軸和y軸分別交于點(diǎn)An和Bn,S1+S2+…+S2009的值是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知直線l:y=-
n+1
n
x+
1
n
(n是不為零的自然數(shù)).當(dāng)n=1時(shí),直線l1:y=-2x+1與x軸和y軸分別交于點(diǎn)A1和B1,設(shè)△A1OB1(其中O是平面直角坐標(biāo)系的原點(diǎn))的面積為S1;當(dāng)n=2時(shí),直線l2:y=-
3
2
x+
1
2
與x軸和y軸分別交于點(diǎn)A2和B2,設(shè)△A2OB2的面積為S2;…依此類推,直線ln與x軸和y軸分別交于點(diǎn)An和Bn,設(shè)△AnOBn的面積為Sn.則S1+S2+S3+…+Sn=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知直線y=-2x+b(b≠0)與x軸交于點(diǎn)A,與y軸交于點(diǎn)B;一拋物線的解析式為y=x2-(b+10)x+c.
(1)若該拋物線過點(diǎn)B,且它的頂點(diǎn)P在直線y=-2x+b上,試確定這條拋物線的解析式;
(2)過點(diǎn)B作直線BC⊥AB交x軸于點(diǎn)C,若拋物線的對(duì)稱軸恰好過C點(diǎn),試確定直線y=-2x+b的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知直線l:y=-
n+1
n
x+
1
n
(n是不為零的自然數(shù)).當(dāng)n=1時(shí),直線l1:y=-2x+1與x軸和y軸分別交于點(diǎn)A1和B1,設(shè)△A1OB1(其中O是平面直角坐標(biāo)系的原點(diǎn))的面積為S1;當(dāng)n=2時(shí),直線l2:y=-
3
2
x+
1
2
與x軸和y軸分別交于點(diǎn)A2和B2,設(shè)△A2OB2的面積為S2;…依此類推,直線ln與x軸和y軸分別交于點(diǎn)An和Bn,設(shè)△AnOBn的面積為Sn.則S1=
 
.S1+S2+S3…+Sn=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知直線y=kx+b(k<0)與x、y軸交于A、B兩點(diǎn),且與雙曲線y=-
2x
交于點(diǎn)C(m,2),若△AOB的面積為4,求△BOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知直線l1:y=x+3與l2:y=-2x交于點(diǎn)B,直線l1與x軸交于點(diǎn)A,動(dòng)點(diǎn)P在線段OA上移動(dòng)(不與點(diǎn)A、O重合)
(1)求點(diǎn)B的坐標(biāo);
(2)過點(diǎn)P作直線l與x軸垂直,設(shè)P點(diǎn)的橫坐標(biāo)為x,△ABO中位于直線l左側(cè)部分的面積為S,求S與x之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知直線y=2x+4與x軸、y軸的交點(diǎn)分別為A、B,y軸上點(diǎn)C的坐標(biāo)為(0,2),在x軸的正半軸上找一點(diǎn)P,使以P、O、C為頂點(diǎn)的三角形與△AOB相似,則點(diǎn)P的坐標(biāo)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知直線y=-
12
x+2
與x軸、y軸分別交于A,B兩點(diǎn),直線y=2x-1與x軸、y軸分別交于D,E兩點(diǎn),兩條直線交于點(diǎn)C.
(1)判斷△BCE是否為直角三角形?說明理由;
(2)計(jì)算△ACD外接圓的面積.

查看答案和解析>>


同步練習(xí)冊(cè)答案