已知a∈R,則“a>0”是“a+
1
a
≥2”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件
C
請(qǐng)?jiān)谶@里輸入關(guān)鍵詞:
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:浙江模擬 題型:單選題

已知a∈R,則“a>0”是“a+
1
a
≥2”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:浙江模擬 題型:單選題

已知a∈R,則“a>0”是“a+
1
a
≥2”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•浙江模擬)已知a∈R,則“a>0”是“a+
1
a
≥2”的(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列四個(gè)命題:
①若|x-lgx|<x+|lgx|成立,則x>1;
②已知|
a
| =|
b
| =2
,
a
b
的夾角為
π
3
,則
b
a
上的投影為1;
③若P=a+
1
a
+2(a>0),q=(
1
2
)
x2-2
(x∈R)
,則p>q;
④已知f(x)=asinx-bcosx在x=
π
6
處取得最大值2,則a=1,b=
3
;
其中正確命題的序號(hào)是
①②
①②
.(把你認(rèn)為正確的命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知下列兩個(gè)命題:
p:?x∈R+,不等式x≥a
x
-1
恒成立;q:y=loga(x2-ax+1)(a>0,a≠1)有最小值.若兩個(gè)命題中有且只有一個(gè)是真命題,則實(shí)數(shù)a的取值范圍是
a=2或a≤1
a=2或a≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在R上的函數(shù)f(x)滿足f(6)=1,f′(x)為f(x)的導(dǎo)函數(shù),已知y=f′(x)的圖象如圖所示.若兩個(gè)正數(shù)a,b滿足f(3a+2b)>1,則
b-1
a+1
的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知a,b,c∈R,下列四個(gè)命題:
(1)若a>b則ac2>bc2
(2)若
a
c
b
c
則a>b
(3)若a>b則a2>b2
(4)若a>b則
1
b
1
a

其中正確的個(gè)數(shù)是(  )
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出以下五個(gè)命題:
①任意n∈N*,(n2-5n+5)2=1.
②已知f(x)=
x
1+x2
,則
f(f(f(…)))
 n個(gè)
=
x
1+nx2

③設(shè)全集U={1,2,3,4,5,6},集合A={3,4},B={3,6},則CU(A∪B)={1,2,3,5,6}.
④定義在R上的函數(shù)y=f(x)在區(qū)間(1,2)上存在唯一零點(diǎn)的充要條件是f(1)•f(2)<0.
⑤已知a>0,b>0,則
1
a
+
1
b
+2
ab
的最小值是4.
其中正確命題的序號(hào)是
②⑤
②⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
3
x3-
1
2
(a+
1
a
)x2+x(a∈R,a≠0).
(1)若a>0,則a為何值時(shí),f(x)在點(diǎn)(1,f(1))處切線斜率最大?并求該切線方程;
(2)當(dāng)a=2時(shí),函數(shù)f(x)在區(qū)間(k-
3
4
,k+
3
4
)內(nèi)不是單調(diào)函數(shù),求實(shí)數(shù)k的取值范圍;
(3)若f(x)的圖象不經(jīng)過(guò)第四象限,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于函數(shù)y=f(x),有下列命題:
①若a∈[-2,2],則函數(shù)f(x)=
x2+ax+1
的定義域?yàn)镽;
②若f(x)=log
1
2
(x2-3x+2)
,則f(x)的單調(diào)增區(qū)間為(-∞,
3
2
)
;
③若f(x)=
1
x2-x-2
,則值域是(-∞,0)∪(0,+∞);
④定義在R上的函數(shù)f(x),若對(duì)任意的x∈R都有f(-x)=-f(x),f(1+x)=f(1-x),則4是y=f(x)的一個(gè)周期;
⑤已知a>0,b>0,則
1
a
+
1
b
+2
ab
的最小值是4.     
其中真命題的編號(hào)是
①④⑤
①④⑤

查看答案和解析>>


同步練習(xí)冊(cè)答案