已知定義在R上的函數(shù)f(x),滿足f′(x)>-1,f(0)=-2,則不等式f(x)+2ex+x<0的解集為( 。
A.(0,+∞)B.(-∞,0)C.(-2,0)D.(-∞,-2)
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x),對任意的實數(shù)m、n,都有f(m+n)=f(m)f(n)成立,且當(dāng)x>0時,有f(x)>1成立.
(Ⅰ)求f(0)的值,并證明當(dāng)x<0時,有0<f(x)<1成立;
(Ⅱ)判斷函數(shù)f(x)在R上的單調(diào)性,并證明你的結(jié)論;
(Ⅲ)若f(1)=2,數(shù)列{an}滿足an=f(n)(n∈N*),記Sn=
1
a1
+
1
a2
+…+
1
an
,且對一切正整數(shù)n有f(
1-m
)>2Sn
恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x),滿足對任意a,b∈R,都有f(a+b2)=f(a)+2f2(b)成立,則f(2011)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

6、已知定義在R上的函數(shù)f(x),寫出命題“若對任意實數(shù)x都有f(-x)=f(x),則f(x)為偶函數(shù)”的否定:
若存在實數(shù)x0,使得f(-x0)≠f(x0),則f(x)不是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x),滿足f(x)=-f(x+
3
2
),f(-1)=1,f(0)=-2
,且y=f(x-
3
4
)
是奇函數(shù),則f(1)+f(2)+…+f(2009)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x),滿足f(x)=f(2-x),且當(dāng)x≥1時,f(x)=(
1
2
)x
,則有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x),滿足f′(x)>-1,f(0)=-2,則不等式f(x)+2ex+x<0的解集為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x),其導(dǎo)函數(shù)f′(x)的大致圖象如圖所示,則下列敘述正確的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x),滿足條件:①f(x)+f(-x)=2,②對非零實數(shù)x,都有2f(x)+f(
1
x
)=2x+
1
x
+3

(1)求函數(shù)f(x)的解析式;
(2)設(shè)函數(shù)g(x)=
f2(x)-2x
  (x≥0)
,直線y=
2
 n-x
與函數(shù)y=g(x)交于An,又Bn為An關(guān)于直線y=x的對稱點,(其中n∈N*),求|AnBn|;
(3)設(shè)an=|AnBn|,Sn為數(shù)列{an}的前n項和,求證:當(dāng)n≥2時,Sn2>2(
S2
2
+
S3
3
+…+
Sn
n
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x),g(x)滿足
f(x)
g(x)
=ax
,且f′(x)g(x)<f(x)g′(x),
f(1)
g(1)
+
f(-1)
g(-1)
=
5
2
,則a的值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x),當(dāng)x∈[-1,1]時,f(x)=2
x
3
 
+3
x
2
 
+1
,且對任意的x滿足f(x-2)=Mf(x)(常數(shù)M≠0),則函數(shù)f(x)在區(qū)間[3,5]上的最小值與最大值之比是( 。

查看答案和解析>>


同步練習(xí)冊答案