【題目】小亮、小穎的手上都有兩根長(zhǎng)度分別為5、8的木棒,小亮與小穎都想通過(guò)轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)游戲來(lái)獲取第三根木棒,如圖,一個(gè)均勻的轉(zhuǎn)盤(pán)被平均分成6等份,分別標(biāo)有木棒的長(zhǎng)度23,58,10126個(gè)數(shù)字.小亮與小穎各轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)一次,停止后,指針指向的數(shù)字即為轉(zhuǎn)出的第三根木棒的長(zhǎng)度.若三根木棒能組成三角形則小亮獲勝,三根木棒能組成等腰三角形則小穎獲勝.

(1)小亮獲勝的概率是   

(2)小穎獲勝的概率是   ;

(3)請(qǐng)你用這個(gè)轉(zhuǎn)盤(pán)設(shè)計(jì)一個(gè)游戲,使得對(duì)小亮與小穎均是公平的;

(4)小穎發(fā)現(xiàn),她連續(xù)轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)10次,都沒(méi)轉(zhuǎn)到58,能不能就說(shuō)小穎獲勝的可能性為0?為什么?

【答案】(1);(2);(3)見(jiàn)解析;(4)不能,理由見(jiàn)解析.

【解析】

1)設(shè)構(gòu)成三角形的第三根木棒的長(zhǎng)度為x,由三角形三邊關(guān)系可知3x13,在所給的6個(gè)數(shù)字中,有4個(gè)數(shù)字滿足條件,則可求小亮獲勝的概率.2)在所給的6個(gè)數(shù)字中,有2個(gè)數(shù)字滿足條件,則可求小穎獲勝的概率.3)答案不唯一,只要使得小亮與小穎獲勝的概率相同即可.4)不能,只能說(shuō)明可能性小,但并不一定為0

解:

(1)設(shè)構(gòu)成三角形的第三根木棒的長(zhǎng)度為x,

85x5+8,即3x13,

∵在2,35,8,10,126個(gè)數(shù)字中,能構(gòu)成三角形的有5、8、10、12這四個(gè),

∴小亮獲勝的概率是,

故答案為:.

(2)∵在23,5,810,126個(gè)數(shù)字中,能構(gòu)成等腰三角形的有5,8這兩個(gè),

∴小穎獲勝的概率是.

(3)小亮轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)一次,停止后指針指向的數(shù)字即為轉(zhuǎn)出的第三根木棒的長(zhǎng)度.若三根木棒能組成三角形則小亮獲勝;小穎轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)一次,停止后指針指向的數(shù)字為偶數(shù),則小穎獲勝.

(4)不能,她連續(xù)轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)10次,都沒(méi)轉(zhuǎn)到58,只是說(shuō)明可能性小,但并不一定為0

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將△ABC沿射線BC方向平移3 cm得到△DEF.若△ABC的周長(zhǎng)為14 cm,則四邊形ABFD的周長(zhǎng)為(

A. 20 cmB. 17 cm

C. 14 cmD. 23 cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】操作體驗(yàn):如圖,在矩形ABCD中,點(diǎn)E、F分別在邊ADBC上,將矩形ABCD沿直線EF折疊,使點(diǎn)D恰好與點(diǎn)B重合,點(diǎn)C落在點(diǎn)C'處.點(diǎn)P為直線EF上一動(dòng)點(diǎn)(不與EF重合),過(guò)點(diǎn)P分別作直線BE、BF的垂線,垂足分別為點(diǎn)MN,以PMPN為鄰邊構(gòu)造平行四邊形PMQN

1)如圖1,求證:BE=BF;

2)特例感知:如圖2,若DE=5,CF=3,當(dāng)點(diǎn)P在線段EF上運(yùn)動(dòng)時(shí),求平行四邊形PMQN的周長(zhǎng);

3)類比探究:如圖3,當(dāng)點(diǎn)P在線段EF的延長(zhǎng)線上運(yùn)動(dòng)時(shí),若DE=a,CF=b.請(qǐng)直接用含ab的式子表示QMQN之間的數(shù)量關(guān)系.(不要求寫(xiě)證明過(guò)程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=x2+bx+c的圖象與x軸交于A、B兩點(diǎn),A點(diǎn)在原點(diǎn)左側(cè),B點(diǎn)的坐標(biāo)為(4,0),與y軸交于C(0,﹣4)點(diǎn),點(diǎn)P是直線BC下方的拋物線上一動(dòng)點(diǎn).

(1)求這個(gè)二次函數(shù)的表達(dá)式.

(2)連接PO、PC,并把POC沿CO翻折,得到四邊形POP′C,那么是否存在點(diǎn)P,使四邊形POP′C為菱形?若存在,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形ABPC的面積最大?求出此時(shí)P點(diǎn)的坐標(biāo)和四邊形ABPC的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P是射線BM上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)B重合),∠AOB= 30°,∠ABM=60°.當(dāng)∠OAP=______時(shí),以點(diǎn)A、O、B中的任意兩點(diǎn)和點(diǎn)P為頂點(diǎn)的三角形是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,拋物線yax2bxca≠0)的頂點(diǎn)為C1,4),交x軸于A、B兩點(diǎn),交y軸于點(diǎn) D,其中點(diǎn)B的坐標(biāo)為(3,0.

1)求拋物線的解析式;

2)如圖2,過(guò)點(diǎn)A的直線與拋物線交于點(diǎn)E,交y軸于點(diǎn)F,其中點(diǎn)E的橫坐標(biāo)為2,若直線PQ為拋物線的對(duì)稱軸,點(diǎn)G為直線PQ上的一動(dòng)點(diǎn),則x軸上是否存在一點(diǎn)H,使DG、H、F四點(diǎn)所圍成的四邊形周長(zhǎng)最小;若存在,求出這個(gè)最小值及點(diǎn)G、H的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

3)如圖3,在拋物線上是否存在一點(diǎn)T,過(guò)點(diǎn)Tx軸的垂線,垂足為點(diǎn)M,過(guò)點(diǎn)MMNBD,交線段AD于點(diǎn)N,連接MD,使△DNM∽△BMD。若存在,求出點(diǎn)T的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一次數(shù)學(xué)興趣小組活動(dòng)中,李燕和劉凱兩位同學(xué)設(shè)計(jì)了如圖所示的兩個(gè)轉(zhuǎn)盤(pán)做游戲(每個(gè)轉(zhuǎn)盤(pán)被分成面積相等的幾個(gè)扇形,并在每個(gè)扇形區(qū)域內(nèi)標(biāo)上數(shù)字).游戲規(guī)則如下:兩人分別同時(shí)轉(zhuǎn)動(dòng)甲、乙轉(zhuǎn)盤(pán),轉(zhuǎn)盤(pán)停止后,若指針?biāo)竻^(qū)域內(nèi)兩數(shù)和小于12,則李燕獲勝;若指針?biāo)竻^(qū)域內(nèi)兩數(shù)和等于12,則為平局;若指針?biāo)竻^(qū)域內(nèi)兩數(shù)和大于12,則劉凱獲勝(若指針停在等分線上,重轉(zhuǎn)一次,直到指針指向某一份內(nèi)為止).

1)請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法表示出上述游戲中兩數(shù)和的所有可能的結(jié)果;

2)分別求出李燕和劉凱獲勝的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】通過(guò)類比聯(lián)想、引申拓展研究典型題目可達(dá)到解一題知一類的目的.下面是一個(gè)案例.

原題如圖①,點(diǎn)分別在正方形的邊, 連接,試說(shuō)明理由.

1思路梳理

因?yàn)?/span>,所以把繞點(diǎn)逆時(shí)針旋轉(zhuǎn)90°至,可使 重合.因?yàn)?/span>,所以,點(diǎn)共線.

根據(jù) ,易證 ,.請(qǐng)證明.

2類比引申

如圖②,四邊形, ,點(diǎn)分別在邊, .都不是直角,則當(dāng)滿足等量關(guān)系時(shí), 仍然成立,請(qǐng)證明.

3聯(lián)想拓展

如圖③,, 點(diǎn)均在邊,.猜想應(yīng)滿足的等量關(guān)系,并寫(xiě)出證明過(guò)程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+bx+cx軸于(﹣1,0)、(3,0)兩點(diǎn),以下四個(gè)結(jié)論正確的是(用序號(hào)表示)______________

(1)圖象的對(duì)稱軸是直線 x=1

(2)當(dāng)x>1時(shí),yx的增大而減小

(3)一元二次方程ax2+bx+c=0的兩個(gè)根是﹣13

(4)當(dāng)﹣1<x<3時(shí),y<0.

查看答案和解析>>

同步練習(xí)冊(cè)答案