已知:點(diǎn)D是等腰直角三角形ABC斜邊BC所在直線上一點(diǎn)(不與點(diǎn)B重合),連接AD.
(1)如圖1,當(dāng)點(diǎn)D在線段BC上時(shí),將線段AD繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)90°得到線段AE,連接CE.求證:BD=CE,BD⊥CE.
(2)如圖2,當(dāng)點(diǎn)D在線段BC延長線上時(shí),探究AD、BD、CD三條線段之間的數(shù)量關(guān)系,寫出結(jié)論并說明理由;(3)若BD=CD,直接寫出∠BAD的度數(shù).
(1)證明:如圖1,∵∠BAC=90°,AB=AC,
∴∠ABC=∠ACB=45°,
∵∠DAE=90°,
∴∠DAE=∠CAE+∠DAC=90°,
∵∠BAC=∠BAD+∠DAC=90°,
∴∠BAD=∠CAE,
在△BAD和△CAE中,
,
∴△BAD≌△CAE(SAS),
∴BD=CE,∠ACE=∠ABC=45°.
∴∠BCE=∠ACB+∠ACE=90°,
∴BD⊥CE;
(2)2AD2=BD2+CD2,
理由:如圖2,將線段AD繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)90°得到線段AE,連接CE.
與(1)同理可證CE=BD,CE⊥BD,
∵∠EAD=90°AE=AD,
∴ED=AD,
在RT△ECD中,ED2=CE2+CD2,
∴2AD2=BD2+CD2.
(3)如圖3,①當(dāng)D在BC邊上時(shí),將線段AD1繞點(diǎn)A順時(shí)針方向旋轉(zhuǎn)90°得到線段AE,連接BE,
與(1)同理可證△ABE≌△ACD1,
∴BE=CD1,BE⊥BC,
∵BD=CD,
∴BD1=BE,
∴tan∠BD1E==,
∴∠BD1E=30°,
∵∠EAD1=EBD1=90°,
∴四邊形A、D1、B、E四點(diǎn)共圓,
∴∠EAB=∠BD1E=30°,
∴∠BAD1=90°﹣30°=60°;
②將線段AD繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)90°得到線段AF,連接CF.
同理可證:∠CFD2=30°,
∵∠FAD2=FCD2=90°,
∴四邊形A、F、D2、C四點(diǎn)共圓,
∴∠CAD2=∠CFD2=30°,
∴∠BAD2=90°+30°=120°,
綜上,∠BAD的度數(shù)為60°或120°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
為了了解某校學(xué)生的課外閱讀情況,隨機(jī)抽查了10學(xué)生周閱讀用時(shí)數(shù),結(jié)果如下表:
周閱讀用時(shí)數(shù)(小時(shí)) 4 5 8 12
學(xué)生人數(shù)(人) 3 4 2 1
則關(guān)于這10名學(xué)生周閱讀所用時(shí)間,下列說法正確的是( )
A. 中位數(shù)是6.5 B. 眾數(shù)是12 C. 平均數(shù)是3.9 D. 方差是6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
在學(xué)習(xí)概率的課堂上,老師提出問題:只有一張電影票,小明和小剛想通過抽取撲克牌的游戲來決定誰去看電影,請你設(shè)計(jì)一個(gè)對小明和小剛都公平的方案.
甲同學(xué)的方案:將紅桃2、3、4、5四張牌背面向上,小明先抽一張,小剛從剩下的三張牌中抽一張,若兩張牌上的數(shù)字之和是奇數(shù),則小明看電影,否則小剛看電影.
(1)甲同學(xué)的方案公平嗎?請用列表或畫樹狀圖的方法說明;
(2)乙同學(xué)將甲的方案修改為只用紅桃2、3、4三張牌,抽取方式及規(guī)則不變,乙的方案公平嗎?(只回答,不說明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
.在一個(gè)不透明的布袋中,裝有紅、黑、白三種只有顏色不同的小球,其中紅色小球4個(gè),黑、白色小球的數(shù)目相同.小明從布袋中隨機(jī)摸出一球,記下顏色后放回布袋中,搖勻后隨機(jī)摸出一球,記下顏色;…如此大量摸球?qū)嶒?yàn)后,小明發(fā)現(xiàn)其中摸出的紅球的頻率穩(wěn)定于20%,由此可以估計(jì)布袋中的黑色小球有 個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,矩形ABCD中,AB=8,AD=6,點(diǎn)E、F分別在邊CD、AB上.
(1)若DE=BF,求證:四邊形AFCE是平行四邊形;
(2)若四邊形AFCE是菱形,求菱形AFCE的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,將線段AB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到線段A′B′,那么A(﹣2,5)的對應(yīng)點(diǎn)A′的坐標(biāo)是 .
[
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com