如圖1,AB為⊙O的直徑,點(diǎn)P是直徑AB上任意一點(diǎn),過(guò)點(diǎn)P作弦CD⊥AB,垂足為P,過(guò)點(diǎn)B的直線與線段AD的延長(zhǎng)線交于點(diǎn)F,且∠F=∠ABC.
(1)若CD=2,BP=4,求⊙O的半徑;
(2)求證:直線BF是⊙O的切線;
(3)當(dāng)點(diǎn)P與點(diǎn)O重合時(shí),過(guò)點(diǎn)A作⊙O的切線交線段BC的延長(zhǎng)線于點(diǎn)E,在其它條件不變的情況下,判斷四邊形AEBF是什么特殊的四邊形?請(qǐng)?jiān)趫D2中補(bǔ)全圖象并證明你的結(jié)論.
: (1)解:CD⊥AB,
∴PC=PD=CD=,
連接OC,設(shè)⊙O的半徑為r,則PO=PB﹣r=4﹣r,
在RT△POC中,OC2=OP2+PC2,
即r2=(4﹣r)2+()2,解得r=.
(2)證明:∵∠A=∠C,∠F=∠ABC,
∴△PBC∽△BFA,
∴∠ABF=∠CPB,
∵CD⊥AB,
∴∠ABF=∠CPB=90°,
∴直線BF是⊙O的切線;
(3)四邊形AEBF是平行四邊形;
理由:解:如圖2所示:∵CD⊥AB,垂足為P,
∴當(dāng)點(diǎn)P與點(diǎn)O重合時(shí),CD=AB,
∴OC=OD,
∵AE是⊙O的切線,
∴BA⊥AE,
∵CD⊥AB,
∴DC∥AE,
∵AO=OB,
∴OC是△ABE的中位線,
∴AE=2OC,
∵∠D=∠ABC,∠F=∠ABC.
∴∠D=∠F,
∴CD∥BF,
∵AE∥BF,
∵OA=OB,
∴OD是△ABF的中位線,
∴BF=2OD,
∴AE=BF,
∴四邊形AEBF是平行四邊形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
一組數(shù)據(jù)2,3,1,2,2的中位數(shù)、眾數(shù)和方差分別是( 。
A.1,2,0.4 B. 2,2,4.4 C. 2,2,0.4 D. 2,1,0.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,矩形ABCD中,AB=8,AD=6,點(diǎn)E、F分別在邊CD、AB上.
(1)若DE=BF,求證:四邊形AFCE是平行四邊形;
(2)若四邊形AFCE是菱形,求菱形AFCE的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在平面直角坐標(biāo)系中,等腰△OBC的邊OB在x軸上,OB=CB,OB邊上的高CA與OC邊上的高BE相交于點(diǎn)D,連接OD,AB=,∠CBO=45°,在直線BE上求點(diǎn)M,使△BMC與△ODC相似,則點(diǎn)M的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
已知k、b是一元二次方程(2x+1)(3x﹣1)=0的兩個(gè)根,且k>b,則函數(shù)y=kx+b的圖象不經(jīng)過(guò)( )
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,直線y=﹣x+3與x軸交于點(diǎn)C,與y軸交于點(diǎn)B,拋物線y=ax2+x+c經(jīng)過(guò)B、C兩點(diǎn).
(1)求拋物線的解析式;
(2)如圖,點(diǎn)E是直線BC上方拋物線上的一動(dòng)點(diǎn),當(dāng)△BEC面積最大時(shí),請(qǐng)求出點(diǎn)E的坐標(biāo)和△BEC面積的最大值?
(3)在(2)的結(jié)論下,過(guò)點(diǎn)E作y軸的平行線交直線BC于點(diǎn)M,連接AM,點(diǎn)Q是拋物線對(duì)稱軸上的動(dòng)點(diǎn),在拋物線上是否存在點(diǎn)P,使得以P、Q、A、M為頂點(diǎn)的四邊形是平行四邊形?如果存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com