【題目】如圖,已知在Rt△ABC中,∠B=30°,∠ACB=90°,延長CA到O,使AO=AC,以O為圓心,OA長為半徑作⊙O交BA延長線于點D,連接CD.
(1)求證:CD是⊙O的切線;
(2)若AB=4,求圖中陰影部分的面積.
【答案】
(1)證明:連接OD,
∵∠BCA=90°,∠B=30°,
∴∠OAD=∠BAC=60°,
∵OD=OA,
∴△OAD是等邊三角形,
∴AD=OA=AC,∠ODA=∠O=60°,
∴∠ADC=∠ACD= ∠OAD=30°,
∴∠ODC=60°+30°=90°,
即OD⊥DC,
∵OD為半徑,
∴CD是⊙O的切線
(2)解:∵AB=4,∠ACB=90°,∠B=30°,
∴OD=OA=AC= AB=2,
由勾股定理得:CD= = =2 ,
∴S陰影=S△ODC﹣S扇形AOD= ×2×2 ﹣ =2 ﹣ π.
【解析】(1)證明切線須連半徑,證直線和半徑垂直;(2) 陰影部分的面積可轉化為三角形面積減去扇形面積.
【考點精析】本題主要考查了含30度角的直角三角形和勾股定理的概念的相關知識點,需要掌握在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半;直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點,點是軸上兩點,其中,點都在軸上,在射線上(不與點重合),,連結.
(1)求、的坐標;
(2)如圖,若在軸正半軸,在線段上,當時,求證:為等邊三角形;(提示:連結)
(3)當時,在圖中畫出示意圖,設,若,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,邊長為2的正方形ABCD的頂點A在y軸上,頂點D在反比例函數(shù)y= (x>0)的圖象上,已知點B的坐標是( , ),則k的值為( )
A.4
B.6
C.8
D.10
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對x,y定義一種新運算T,規(guī)定:T(x,y)=(其中a,b均為非零常數(shù)),這里等式右邊是通常的四則運算,例如:T(0,1)==b,已知T(1,1)=2.5,T(4,﹣2)=4.
(1)求a,b的值;
(2)若關于m的不等式組恰好有2個整數(shù)解,求實數(shù)P的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在菱形ABCD中,∠BAD=60°.
(1)如圖1,點E為線段AB的中點,連接DE,CE,若AB=4,求線段EC的長;
(2)如圖2,M為線段AC上一點(M不與A,C重合),以AM為邊,構造如圖所示等邊三角形AMN,線段MN與AD交于點G,連接NC,DM,Q為線段NC的中點,連接DQ,MQ,求證:DM=2DQ.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,點P是正方形ABCD的BC邊上的一點,以DP為邊長的正方形DEFP與正方形ABCD在BC的同側,連接AC,F(xiàn)B.
(1)請你判斷FB與AC又怎樣的位置關系?并證明你的結論;
(2)若點P在射線CB上運動時,如圖②,判斷(1)中的結論FB與AC的位置關系是否仍然成立?并說明理由;
(3)當點P在射線CB上運動時,請你指出點E的運動路線,不必說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=﹣ x+1與x軸交于點A,與y軸交于點B,拋物線y=﹣x2+bx+c經(jīng)過A,B兩點.
(1)求拋物線的解析式;
(2)點P是第一象限拋物線上的一點,連接PA、PB、PO,若△POA的面積是△POB面積的 倍.
①求點P的坐標;
②點Q為拋物線對稱軸上一點,請直接寫出QP+QA的最小值;
(3)點M為直線AB上的動點,點N為拋物線上的動點,當以點O、B、M、N為頂點的四邊形是平行四邊形時,請直接寫出點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線l∥AB,l與AB之間的距離為2.C、D是直線l上兩個動點(點C在D點的左側),且AB=CD=5.連接AC、BC、BD,將△ABC沿BC折疊得到△A′BC.下列說法:①四邊形ABCD的面積始終為10;②當A′與D重合時,四邊形ABDC是菱形;③當A′與D不重合時,連接A′、D,則∠CA′D+∠BCA′=180°;④若以A′、C、B、D為頂點的四邊形為矩形,則此矩形相鄰兩邊之和為3或7.其中正確的是( 。
A. ①②④ B. ①③④ C. ①②③ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線y=x+k和雙曲線y= (k為正整數(shù))交于A,B兩點.
(1)當k=1時,求A、B兩點的坐標;
(2)當k=2時,求△AOB的面積;
(3)當k=1時,△OAB的面積記為S1 , 當k=2時,△OAB的面積記為S2 , …,依此類推,當k=n時,△OAB的面積記為Sn , 若S1+S2+…+Sn= ,求n的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com