【題目】如圖,AB是⊙O的直徑,過圓外一點E作EF與⊙O相切于G,交AB的延長線于F,EC⊥AB于H,交⊙O于D,C兩點,連接AG交DC于K.
(1)求證:EG=EK;
(2)連接AC,若AC∥EF,cosC=,AK=,求BF的長.
【答案】(1)見解析;(2)
【解析】
(1)連接OG.根據(jù)切線的性質(zhì)得到∠OGE=90°,證明∠EKG=∠AGE,根據(jù)等腰三角形的判定定理證明結(jié)論;
(2)連接OC,設(shè)CH=4k,根據(jù)余弦的定義、勾股定理用k表示出AC、AH,根據(jù)勾股定理列式求出k,設(shè)⊙O半徑為R,根據(jù)勾股定理列式求出R,根據(jù)余弦的定義求出OF,計算即可.
解:連接OG.
∵EF是⊙O的切線,
∴∠OGE=90°,即∠OGA+∠AGE=90°.
∵OA=OG,
∴∠OGA=∠OAG,
∴∠OAG+∠AGE=90°.
∵CD⊥AB,
∴∠AHK=90°,則∠OAG+∠AKH=90°.
∴∠AKH=∠AGE.
∵∠AKH=∠EKG,
∴∠EKG=∠AGE,
∴EG=EK;
(2)如圖,連接OC,
設(shè)CH=4k,
∵cos∠ACH=,
∴AC=5k,
由勾股定理得,AH==3k,
∵AC∥EF,
∴∠CAK=∠EGA,
又∠AKC=∠EKG,而由(1)知∠EKG=∠EGA,
∴∠CAK=∠CKA,
∴CK=AC=5k,HK=CK﹣CH=k.
在Rt△AHK中,AH2+HK2=AK2,即(3k)2+k2=()2,
解得,k=1,
則CH=4,AC=5,AH=3,
設(shè)⊙O半徑為R,在Rt△OCH中,OH2+CH2=OC2,即(R﹣3)2+42=R2,
解得,R=,
由AC∥EF知,∠CAH=∠F,則∠ACH=∠GOF,
在Rt△OGF中,cos∠ACH=cos∠GOF=,
解得,OF=,
∴BF=OF﹣OB=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,拋物線與軸交于點,與軸交于點,在軸上有一動點,過點作軸的垂線交直線于點,交拋物線于點,過點作于點.
(1)求的值和直線的函數(shù)表達式;
(2)設(shè)的周長為,的周長為,若,求的值;
(3)如圖2,在(2)條件下,將線段繞點逆時針旋轉(zhuǎn)得到,旋轉(zhuǎn)角為,連接、,求的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線AB與x軸交于點B,與y軸交于點A,與反比例函數(shù)y=的圖象在第二象限交于點C,CE⊥x軸,垂足為點E,tan∠ABO=,OB=4,OE=2.
(1)求反比例函數(shù)的解析式;
(2)若點D是反比例函數(shù)圖象在第四象限上的點,過點D作DF⊥y軸,垂足為點F,連接OD、BF,如果S△BAF=4S△DFO,求點D的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等腰三角形△ABC中,O為底邊BC的中點,以O為圓心作半圓與AB,AC相切,切點分別為D,E.過半圓上一點F作半圓的切線,分別交AB,AC于M,N.那么的值等于( 。
A.B.C.D.1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=x+與x軸、y軸分別相交于A、B兩點,圓心P的坐標為(1,0),⊙P與y軸相切于點O.若將⊙P沿x軸向左移動,當⊙P與該直線相交時,滿足橫坐標為整數(shù)的點P的個數(shù)是( )
A.3B.4C.5D.6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】鄂州市化工材料經(jīng)銷公司購進一種化工原料若干千克,價格為每千 克30元.物價部門規(guī)定其銷售單價不高于每千克60元,不低于每千克30元.經(jīng)市場調(diào)查發(fā)現(xiàn):日銷售量y(千克)是銷售單價x(元)的一次函數(shù),且當x=60時 ,y=80;x=50時,y=100.在銷售過程中,每天還要支付其他費用450元.
(1)(3分)求出y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.
(2)(3分)求該公司銷售該原料日獲利w(元)與銷售單價x(元)之間的函數(shù)關(guān)系式.
(3)(4分)當銷售單價為多少元時,該公司日獲利最大?最大獲利是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在研究反比例函數(shù)的圖象與性質(zhì)時,我們對函數(shù)解析式進行了深入分析.
首先,確定自變量的取值范圍是全體非零實數(shù),因此函數(shù)圖象會被軸分成兩部分;其次,分析解析式,得到隨的變化趨勢:當時,隨著值的增大,的值減小,且逐漸接近于零,隨著值的減小,的值會越來越大…,由此,可以大致畫出在時的部分圖象,如圖所示:
利用同樣的方法,我們可以研究函數(shù)的圖象與性質(zhì).通過分析解析式畫出部分函數(shù)圖象如圖所示.
(1)請沿此思路在圖中完善函數(shù)圖象的草圖并標出此函數(shù)圖象上橫坐標為0的點;(畫出網(wǎng)格區(qū)域內(nèi)的部分即可)
(2)觀察圖象,寫出該函數(shù)的一條性質(zhì):__________;
(3)若關(guān)于的方程有兩個不相等的實數(shù)根,結(jié)合圖象,直接寫出實數(shù)的取值范圍: __________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過點A(1,0)和B(0,3),其頂點為D.設(shè)P為該拋物線上一點,且位于拋物線對稱軸右側(cè),作PH⊥對稱軸,垂足為H,若△DPH與△AOB相似
(1)求拋物線的解析式
(2)求點P的坐標
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com