【題目】一艘觀光游船從港口A以北偏東60°的方向出港觀光,航行80海里至C處時(shí)發(fā)生了側(cè)翻沉船事故,立即發(fā)出了求救信號,一艘在港口正東方向的海警船接到求救信號,測得事故船在它的北偏東37°方向,馬上以40海里每小時(shí)的速度前往救援,
(1)求點(diǎn)C到直線AB的距離;
(2)求海警船到達(dá)事故船C處所需的大約時(shí)間.(溫馨提示:sin53°≈0.8,cos53°≈0.6)
【答案】(1)40海里;(2)小時(shí).
【解析】
(1)作CD⊥AB,在Rt△ACD中,由∠CAD=30°知CD=AC,據(jù)此可得答案;
(2)根據(jù)BC=求得BC的長,繼而可得答案.
解:(1)如圖,過點(diǎn)C作CD⊥AB交AB延長線于D.
在Rt△ACD中,∵∠ADC=90°,∠CAD=30°,AC=80海里,
∴點(diǎn)C到直線AB距離CD=AC=40(海里).
(2)在Rt△CBD中,∵∠CDB=90°,∠CBD=90°﹣37°=53°,
∴BC=≈=50(海里),
∴海警船到達(dá)事故船C處所需的時(shí)間大約為:50÷40=(小時(shí)).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BD為△ABC外接圓⊙O的直徑,且∠BAE=∠C.
(1)求證:AE與⊙O相切于點(diǎn)A;
(2)若AE∥BC,BC=2,AC=2,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,以斜邊AB上一點(diǎn)O為圓心,OB為半徑作⊙O,交AC于點(diǎn)E,交AB于點(diǎn)D,且∠BEC=∠BDE.
(1)求證:AC是⊙O的切線;
(2)連接OC交BE于點(diǎn)F,若,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級甲、乙兩班各有學(xué)生50人,為了了解這兩個(gè)班學(xué)生身體素質(zhì)情況,進(jìn)行了抽樣調(diào)查,數(shù)據(jù)整理過程如下,請完成下面數(shù)據(jù)整理中的問題:
(1)收集數(shù)據(jù)
從甲、乙兩個(gè)班中各隨機(jī)抽取10名學(xué)生進(jìn)行身體素質(zhì)測試,測試成績(百分制)如下:
甲班:65,75,75,80,60,50,75,90,85,65;
乙班:90,55,80,70,55,70,95,80,65,70;
(2)整理描述數(shù)據(jù)
按如下分?jǐn)?shù)段整理、描述這兩組樣本數(shù)據(jù):
成績x 人數(shù) 班級 | 50≤x<60 | 60≤x<70 | 70≤x<80 | 80≤x<90 | 90≤x<100 |
甲班 | 1 | 3 | 3 | 2 | 1 |
乙班 | 2 | 1 | m | 2 | n |
在表中:m= ,n= ;
(3)分析數(shù)據(jù)
①若規(guī)定測試成績在80分(含80分)以上的學(xué)生身體素質(zhì)為優(yōu)秀,請估計(jì)乙班50名學(xué)生中身體素質(zhì)為優(yōu)秀的學(xué)生有 人;
②現(xiàn)從甲班指定的3名學(xué)生(1男2女),乙班指定的2名學(xué)生(1男1女)中分別抽取1名學(xué)生去參加身體素質(zhì)拓展訓(xùn)練,用樹狀圖或列表法求出抽到的2名同學(xué)中恰好是1男1女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC內(nèi)接于⊙O,過點(diǎn)A作直線EF.
(1)如圖①所示,若AB為⊙O的直徑,要使EF成為⊙O的切線,還需要添加的一個(gè)條件是(至少說出兩種): 或者 .
(2)如圖②所示,如果AB是不過圓心O的弦,且∠CAE=∠B,那么EF是⊙O的切線嗎?試證明你的判斷.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一塊三角形的土地,它的一條邊BC=100米,DC邊上的高AH=80米,某單位要沿著邊BC修一座底面是矩形DEFG的大樓,D、G分別在邊AB、AC上.若大樓的寬是40米(即DE=40米),則這個(gè)矩形的面積是_____平方米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】頂點(diǎn)為D的拋物線y=﹣x2+bx+c交x軸于A、B(3,0),交y軸于點(diǎn)C,直線y=﹣x+m經(jīng)過點(diǎn)C,交x軸于E(4,0).
(1)求出拋物線的解析式;
(2)如圖1,點(diǎn)M為線段BD上不與B、D重合的一個(gè)動(dòng)點(diǎn),過點(diǎn)M作x軸的垂線,垂足為N,設(shè)點(diǎn)M的橫坐標(biāo)為x,四邊形OCMN的面積為S,求S與x之間的函數(shù)關(guān)系式,并求S的最大值;
(3)點(diǎn)P為x軸的正半軸上一個(gè)動(dòng)點(diǎn),過P作x軸的垂線,交直線y=﹣x+m于G,交拋物線于H,連接CH,將△CGH沿CH翻折,若點(diǎn)G的對應(yīng)點(diǎn)F恰好落在y軸上時(shí),請直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB,AM,BN 分別是⊙O 的切線,切點(diǎn)分別為 P,M,N.若 MN∥AB,∠A=60°,AB=6,則⊙O 的半徑是( )
A.B.3C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一張正方形紙片,依次沿著折痕,(其中)向上翻折兩次,形成“小船”的圖樣.若,四邊形與的周長差為,則正方形的周長為______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com