【題目】如圖1,拋物線y=ax2+bx+3交x軸于點(diǎn)A(﹣1,0)和點(diǎn)B(3,0).
(1)求該拋物線所對(duì)應(yīng)的函數(shù)解析式;
(2)如圖2,該拋物線與y軸交于點(diǎn)C,頂點(diǎn)為F,點(diǎn)D(2,3)在該拋物線上.
①求四邊形ACFD的面積;
②點(diǎn)P是線段AB上的動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)A、B重合),過點(diǎn)P作PQ⊥x軸交該拋物線于點(diǎn)Q,連接AQ、DQ,當(dāng)△AQD是直角三角形時(shí),求出所有滿足條件的點(diǎn)Q的坐標(biāo).
【答案】(1)y=﹣x2+2x+3;(2)①S四邊形ACFD= 4;②Q點(diǎn)坐標(biāo)為(1,4)或(,)或(,).
【解析】
此題涉及的知識(shí)點(diǎn)是拋物線的綜合應(yīng)用,難度較大,需要有很好的邏輯思維,解題時(shí)先根據(jù)已知點(diǎn)的坐標(biāo)列方程求出函數(shù)解析式,然后再根據(jù)解析式和已知條件求出四邊形的面積和點(diǎn)的坐標(biāo)。
(1)由題意可得,解得,
∴拋物線解析式為y=﹣x2+2x+3;
(2)①∵y=﹣x2+2x+3=﹣(x﹣1)2+4,
∴F(1,4),
∵C(0,3),D(2,3),
∴CD=2,且CD∥x軸,
∵A(﹣1,0),
∴S四邊形ACFD=S△ACD+S△FCD=×2×3+×2×(4﹣3)=4;
②∵點(diǎn)P在線段AB上,
∴∠DAQ不可能為直角,
∴當(dāng)△AQD為直角三角形時(shí),有∠ADQ=90°或∠AQD=90°,
i.當(dāng)∠ADQ=90°時(shí),則DQ⊥AD,
∵A(﹣1,0),D(2,3),
∴直線AD解析式為y=x+1,
∴可設(shè)直線DQ解析式為y=﹣x+b′,
把D(2,3)代入可求得b′=5,
∴直線DQ解析式為y=﹣x+5,
聯(lián)立直線DQ和拋物線解析式可得,解得或,
∴Q(1,4);
ii.當(dāng)∠AQD=90°時(shí),設(shè)Q(t,﹣t2+2t+3),
設(shè)直線AQ的解析式為y=k1x+b1,
把A、Q坐標(biāo)代入可得,解得k1=﹣(t﹣3),
設(shè)直線DQ解析式為y=k2x+b2,同理可求得k2=﹣t,
∵AQ⊥DQ,
∴k1k2=﹣1,即t(t﹣3)=﹣1,解得t=,
當(dāng)t=時(shí),﹣t2+2t+3=,
當(dāng)t=時(shí),﹣t2+2t+3=,
∴Q點(diǎn)坐標(biāo)為(,)或(,);
綜上可知Q點(diǎn)坐標(biāo)為(1,4)或(,)或(,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,∠ACB=90°,OC=2BO,AC=6,點(diǎn)B的坐標(biāo)為(1,0),拋物線y=﹣x2+bx+c經(jīng)過A、B兩點(diǎn).
(1)求點(diǎn)A的坐標(biāo);
(2)求拋物線的解析式;
(3)點(diǎn)P是直線AB上方拋物線上的一點(diǎn),過點(diǎn)P作PD垂直x軸于點(diǎn)D,交線段AB于點(diǎn)E,使PE=DE.
①求點(diǎn)P的坐標(biāo);
②在直線PD上是否存在點(diǎn)M,使△ABM為直角三角形?若存在,求出符合條件的所有點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形中,,把矩形沿對(duì)角線所在直線折疊,使點(diǎn)落在點(diǎn)處,交于點(diǎn),連接.
(1)求證:;
(2)求證:是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的一元二次方程 有實(shí)數(shù)根.
(1)求的取值范圍;
(2)若 兩個(gè)實(shí)數(shù)根分別為 ,且,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,分別沿長方形紙片ABCD和正方形紙片EFGH的對(duì)角線AC,EG剪開,拼成如圖2所示的ALMN,若中間空白部分四邊形OPQR恰好是正方形,且ALMN的面積為50,則正方形EFGH的面積為( )
A. 24 B. 25 C. 26 D. 27
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是小西“過直線外一點(diǎn)作這條直線的垂線”的尺規(guī)作圖過程.
已知:直線l及直線l外一點(diǎn)P.
求作:直線PQ,使得PQ⊥l.
做法:如圖,
①在直線l的異側(cè)取一點(diǎn)K,以點(diǎn)P為圓心,PK長為半徑畫弧,交直線l于點(diǎn)A,B;
②分別以點(diǎn)A,B為圓心,大于AB的同樣長為半徑畫弧,兩弧交于點(diǎn)Q(與P點(diǎn)不重合);
③作直線PQ,則直線PQ就是所求作的直線.
根據(jù)小西設(shè)計(jì)的尺規(guī)作圖過程,
(1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)
(2)完成下面的證明.
證明:∵PA= ,QA= ,
∴PQ⊥l( )(填推理的依據(jù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(1,2),B(3,2),連接AB. 若對(duì)于平面內(nèi)一點(diǎn)P,線段AB上都存在點(diǎn)Q,使得PQ≤1,則稱點(diǎn)P是線段AB的“臨近點(diǎn)”.
(1)在點(diǎn)C(0,2),D(2,),E(4,1)中,線段AB的“臨近點(diǎn)”是__________;
(2)若點(diǎn)M(m,n)在直線上,且是線段AB的“臨近點(diǎn)”,求m的取值范圍;
(3)若直線上存在線段AB的“臨近點(diǎn)”,求b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】地鐵10號(hào)線某站點(diǎn)出口橫截面平面圖如圖所示,電梯的兩端分別距頂部9.9米和2.4米,在距電梯起點(diǎn)端6米的處,用1.5米的測角儀測得電梯終端處的仰角為14°,求電梯的坡度與長度.(參考數(shù)據(jù):,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象如下所示,下列5個(gè)結(jié)論:①;②;③;④;⑤(的實(shí)數(shù)),其中正確的結(jié)論有幾個(gè)?
A. ①②③ B. ②③④ C. ②③⑤ D. ③④⑤
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com